Advertisement

International Microbiology

, Volume 21, Issue 1–2, pp 3–14 | Cite as

The deep continental subsurface: the dark biosphere

  • Cristina Escudero
  • Mónica Oggerin
  • Ricardo Amils
Review
  • 223 Downloads

Abstract

Although information from devoted geomicrobiological drilling studies is limited, it is clear that the results obtained so far call for a systematic exploration of the deep continental subsurface, similar to what has been accomplished in recent years by the Ocean Drilling Initiatives. In addition to devoted drillings from the surface, much of the continental subsurface data has been obtained using different subterranean “windows,” each with their correspondent limitations. In general, the number and diversity of microorganisms decrease with depth, and the abundance of Bacteria is superior to Archaea. Within Bacteria, the most commonly detected phyla correspond to Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Within Archaea, methanogens are recurrently detected in most analyzed subsurface samples. One of the most controversial topics in the study of subsurface environments is whether the available energy source is endogenous or partly dependent on products photosynthetically generated in the subsurface. More information, at better depth resolution, is needed to build up the catalog of deep subsurface microbiota and the biologically available electron acceptors and donors.

Keywords

Deep subsurface drilling Geomicrobiology Dark biosphere SLiME Fluorescence in situ hybridization 

Notes

Acknowledgements

This study received support from the Ministerio de Economía y Competitividad, grant CGL2015-66242-R. C.E is a predoctoral fellow from the same ministry.

References

  1. Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58.  https://doi.org/10.1046/j.1472-4669.2003.00006.x CrossRefGoogle Scholar
  2. Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:131–155.  https://doi.org/10.1016/j.palaeo.2004.10.018 CrossRefGoogle Scholar
  3. Apps JA, van de Kamp PC (1993) Energy gases of abiogenic origin in the Earth’s crust. US Geol Surv Prof Paper 1570:81–132Google Scholar
  4. Basso O, Lascourreges J-F, Le Borgne F, Le Goff C, Magot M (2009) Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Res Microbiol 160:107–116.  https://doi.org/10.1016/j.resmic.2008.10.010 CrossRefPubMedGoogle Scholar
  5. Bastin ES, Greer FE, Merritt C, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24 www.jstor.org/stable/1649067 CrossRefPubMedGoogle Scholar
  6. Bomberg M, Nyyssönen M, Nousiainen A, Hultman J, Paulin L, Auvinen P, Itävaara M (2014) Evaluation of molecular techniques in characterization of deep terrestrial biosphere. Open Journal of Ecology 4:468–487.  https://doi.org/10.4236/oje.2014.48040 CrossRefGoogle Scholar
  7. Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott T (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82.  https://doi.org/10.1038/nature09974 CrossRefPubMedGoogle Scholar
  8. Brazelton WJ, Nelson B, Schrenk MO (2012) Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol 2(268).  https://doi.org/10.3389/fmicb.2011.00268
  9. Breuker A, Köweker G, Blazejak A, Schippers A (2011) The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Front Microbiol 2.  https://doi.org/10.3389/fmicb.2011.00156
  10. Cockell CS, Voytek MA, Gronstal AL, Finster K, Kirshtein JD, Howard K, Reitner J, Gohn GS, Sanford WE, Horton Jr JW (2012) Impact disruption and recovery of the deep subsurface biosphere. Astrobiology 12:231–246.  https://doi.org/10.1089/ast.2011.0722 CrossRefPubMedGoogle Scholar
  11. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083.  https://doi.org/10.1126/science.203.4385.1073 CrossRefPubMedGoogle Scholar
  12. Chapelle FH, O'neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315. doi:doi: https://doi.org/10.1038/415312a
  13. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278CrossRefPubMedGoogle Scholar
  14. D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070.  https://doi.org/10.1126/science.1064878 CrossRefPubMedGoogle Scholar
  15. Darwin C (1839) Voyages of the adventure and beagle, volume III–journal and remarks, 1832–1836. Henry Colburn, LondonGoogle Scholar
  16. Dong Y, Sanford RA, Locke RA, Cann IK, Mackie RI, Fouke BW (2014) Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7–2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA). Frontiers in microbiology 5 (511). doi:doi: https://doi.org/10.3389/fmicb.2014.00511
  17. dos Santos AM, Vieira KR, Sartori RB, dos Santos AM, Queiroz MI, Zepka LQ, Jacob-Lopes E (2017) Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in bioengineering and biotechnology 5.  https://doi.org/10.3389/fbioe.2017.00012
  18. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799.  https://doi.org/10.1126/science.287.5459.1796 CrossRefPubMedGoogle Scholar
  19. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131.  https://doi.org/10.1073/pnas.1004880107 CrossRefPubMedGoogle Scholar
  20. Escudero C, Vera M, Oggerin M, Amils R (2018) Active microbial biofilms in deep poor porous continental subsurface rocks. Sci Rep 8(1):1538.  https://doi.org/10.1038/s41598-018-19903-z CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eydal HS, Jägevall S, Hermansson M, Pedersen K (2009) Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. The ISME journal 3:1139–1147.  https://doi.org/10.1038/ismej.2009.66 CrossRefPubMedGoogle Scholar
  22. Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008) Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Astrobiology 8:1023–1047.  https://doi.org/10.1089/ast.2006.0104
  23. Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356.  https://doi.org/10.1080/01490450600875571 CrossRefGoogle Scholar
  24. Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14:183–202.  https://doi.org/10.1080/01490459709378043 CrossRefGoogle Scholar
  25. Fry NK, Fredrickson JK, Fishbain S, Wagner M, Stahl DA (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 63:1498–1504PubMedPubMedCentralGoogle Scholar
  26. Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol 33:107–172.  https://doi.org/10.1016/S0065-2164(08)70206-5 CrossRefPubMedGoogle Scholar
  27. Gihring T, Moser D, Lin L-H, Davidson M, Onstott T, Morgan L, Milleson M, Kieft T, Trimarco E, Balkwill D (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430.  https://doi.org/10.1080/01490450600875696 CrossRefGoogle Scholar
  28. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci 89:6045–6049.  https://doi.org/10.1073/pnas.89.13.6045 CrossRefPubMedGoogle Scholar
  29. Gronstal AL, Voytek MA, Kirshtein JD, Nicole M, Lowit MD, Cockell CS (2009) Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure. Geol Soc Am Spec Pap 458:951–964.  https://doi.org/10.1130/2009.2458(41) CrossRefGoogle Scholar
  30. Hoehler TM (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215.  https://doi.org/10.1111/j.1472-4677.2004.00033.x CrossRefGoogle Scholar
  31. Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M (2008) Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 74:5068–5077.  https://doi.org/10.1128/AEM.00208-08 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K (2017) Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. The ISME Journal 12:31–47.  https://doi.org/10.1038/ismej.2017.140
  33. Ino K, Konno U, Kouduka M, Hirota A, Togo YS, Fukuda A, Komatsu D, Tsunogai U, Tanabe AS, Yamamoto S (2016) Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. Environ Microbiol Rep 8:285–294.  https://doi.org/10.1111/1758-2229.12379 CrossRefPubMedGoogle Scholar
  34. Itävaara M, Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Ahonen L, Hultman J, Paulin L, Auvinen P, Kukkonen IT (2011a) Microbiological sampling and analysis of the Outokumpu Deep Drill Hole biosphere in 2007–2009. In: Kukkonen IT (ed) Special paper - geological survey of Finland, vol 51. Finland, pp 199–206Google Scholar
  35. Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011b) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 77:295–309.  https://doi.org/10.1111/j.1574-6941.2011.01111.x.
  36. Iwatsuki T, Hagiwara H, Ohmori K, Munemoto T, Onoe H (2015) Hydrochemical disturbances measured in groundwater during the construction and operation of a large-scale underground facility in deep crystalline rock in Japan. Environmental Earth Sciences 74:3041–3057.  https://doi.org/10.1007/s12665-015-4337-3 CrossRefGoogle Scholar
  37. Jakobsen R (2007) Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis. Water Resour Res 43(12).  https://doi.org/10.1029/2006WR005663
  38. Jannasch HW, Eimhjellen K, Farmanfarmalan A (1971) Microbial degradation of organic matter in the deep sea. Science 171:672–675.  https://doi.org/10.1126/science.171.3972.672 CrossRefPubMedGoogle Scholar
  39. Jones AA, Bennett PC (2017) Mineral ecology: surface specific colonization and geochemical drivers of biofilm accumulation, composition, and phylogeny. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.00491
  40. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216.  https://doi.org/10.1073/pnas.1203849109 CrossRefPubMedGoogle Scholar
  41. Kieft T (2010) Sampling the deep sub-surface using drilling and coring techniques. In: Handbook of hydrocarbon and lipid microbiology. Springer, pp 3427–3441Google Scholar
  42. Kieft TL (2016) Microbiology of the deep continental biosphere. In: C. H (ed) Their world: a diversity of microbial environments, vol 1. Springer, pp 225–249. doi: https://doi.org/10.1007/978-3-319-28071-4_6
  43. Kurakov A, Lavrent’Ev R, Nechitailo TY, Golyshin P, Zvyagintsev D (2008) Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 77:90–98.  https://doi.org/10.1134/S002626170801013X CrossRefGoogle Scholar
  44. Kyle JE, Eydal HS, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. The ISME Journal 2:571–574.  https://doi.org/10.1038/ismej.2008.18 CrossRefPubMedGoogle Scholar
  45. Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R (2015) Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00349
  46. Lau MC, Cameron C, Magnabosco C, Brown CT, Schilkey F, Grim S, Hendrickson S, Pullin M, Lollar BS, van Heerden E (2014) Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2015.00349
  47. Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, Lindsay MR, Magnabosco C, Wang W, Wiggins JB, Guo L (2016) An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proceedings of the National Academy of Sciences 113:E7927-E7936. doi: https://doi.org/10.1073/pnas.1612244113
  48. Lehman RM, O'Connell SP, Banta A, Fredrickson JK, Reysenbach A-L, Kieft TL, Colwell FS (2004) Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ. Geomicrobiol J 21:169–182.  https://doi.org/10.1080/01490450490275848 CrossRefGoogle Scholar
  49. Lin L-H, Hall J, Onstott T, Gihring T, Lollar BS, Boice E, Pratt L, Lippmann-Pipke J, Bellamy RE (2006a) Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol J 23:475–497.  https://doi.org/10.1080/01490450600875829 CrossRefGoogle Scholar
  50. Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL (2006b) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482.  https://doi.org/10.1126/science.1127376
  51. Lipman CB (1931) Living microörganisms in ancient rocks. J Bacteriol 22:183–198PubMedPubMedCentralGoogle Scholar
  52. Magnabosco C, Ryan K, Lau MC, Kuloyo O, Lollar BS, Kieft TL, Van Heerden E, Onstott TC (2016) A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. The ISME journal 10:730–741.  https://doi.org/10.1038/ismej.2015.150 CrossRefPubMedGoogle Scholar
  53. Magnabosco C, Tekere M, Lau MC, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL (2014) Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2014.00679
  54. Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103:971–977.  https://doi.org/10.1128/AEM.71.6.3213-3227.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  55. McMahon S, Parnell J (2014) Weighing the deep continental biosphere. FEMS Microbiol Ecol 87:113–120.  https://doi.org/10.1111/1574-6941.12196 CrossRefPubMedGoogle Scholar
  56. Momper L, Jungbluth SP, Lee MD, Amend JP (2017a) Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. The ISME journal 11:2319–2333.  https://doi.org/10.1038/ismej.2017.94 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Momper L, Reese BK, Zinke L, Wanger G, Osburn MR, Moser D, Amend JP (2017b) Major phylum-level differences between porefluid and host rock bacterial communities in the terrestrial deep subsurface. Environ Microbiol Rep 9:501–511.  https://doi.org/10.1111/1758-2229.12563 CrossRefPubMedGoogle Scholar
  58. Moraru C, Amann R (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35:549–552.  https://doi.org/10.1016/j.syapm.2012.10.001 CrossRefPubMedGoogle Scholar
  59. Moraru C, Lam P, Fuchs BM, Kuypers MM, Amann R (2010) GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12:3057–3073.  https://doi.org/10.1111/j.1462-2920.2010.02281.x CrossRefPubMedGoogle Scholar
  60. Morita RY (1999) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320.  https://doi.org/10.1007/s002489901002 CrossRefPubMedGoogle Scholar
  61. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783.  https://doi.org/10.1128/AEM.71.12.8773-8783.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Moser DP, Onstott T, Fredrickson JK, Brockman FJ, Balkwill DL, Drake G, Pfiffner S, White D, Takai K, Pratt L (2003) Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiol J 20:517–548.  https://doi.org/10.1080/713851170 CrossRefGoogle Scholar
  63. Murakami Y, Fujita Y, Naganuma T, Iwatsuki T (2002) Abundance and viability of the groundwater microbial communities from a borehole in the Tono uranium deposit area, central Japan. Microbes Environ 17:63–74.  https://doi.org/10.1264/jsme2.2002.63 CrossRefGoogle Scholar
  64. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 105:17861–17866.  https://doi.org/10.1073/pnas.0809329105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405–410.  https://doi.org/10.1016/j.tim.2005.07.010 CrossRefPubMedGoogle Scholar
  66. Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Pitkänen P, Itävaara M (2012) Methanogenic and sulphate-reducing microbial communities in deep groundwater of crystalline rock fractures in Olkiluoto, Finland. Geomicrobiol J 29:863–878.  https://doi.org/10.1080/01490451.2011.635759 CrossRefGoogle Scholar
  67. Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. The ISME journal 8:126–138.  https://doi.org/10.1038/ismej.2013.125 CrossRefPubMedGoogle Scholar
  68. Onstott T, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps T, White D, Peacock A, Balkwill D, Hoover R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191.  https://doi.org/10.1046/j.1462-2920.2003.00512.x CrossRefPubMedGoogle Scholar
  69. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422.  https://doi.org/10.1128/MMBR.00039-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Oremland RS, Culbertson C, Simoneit B (1982) Methanogenic activity in sediment from Leg 64, Gulf of California. In: Curray J, Moore, DG, et al., (ed) Initial Reports of the Deep Sea Drilling Project, vol 64. US Government Printing pp 759–762. doi: https://doi.org/10.2973/dsdp.proc.64.122.1982
  71. Osburn MR, LaRowe DE, Momper LM, Amend JP (2014) Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2014.00610
  72. Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414.  https://doi.org/10.1016/S0168-6445(97)00022-3 CrossRefGoogle Scholar
  73. Pedersen K (1999) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 52:163–176.  https://doi.org/10.1016/S0013-7952(99)00004-6 CrossRefGoogle Scholar
  74. Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16.  https://doi.org/10.1111/j.1574-6968.2000.tb09033.x CrossRefPubMedGoogle Scholar
  75. Pedersen K (2012) Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 81:217–229.  https://doi.org/10.1111/j.1574-6941.2012.01370.x. CrossRefPubMedGoogle Scholar
  76. Phelps T, Murphy E, Pfiffner S, White D (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28:335–349.  https://doi.org/10.1007/BF00662027 CrossRefPubMedGoogle Scholar
  77. Probst AJ, Birarda G, Holman H-YN, DeSantis TZ, Wanner G, Andersen GL, Perras AK, Meck S, Völkel J, Bechtel HA (2014a) Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS One 9(6):e99801.  https://doi.org/10.1371/journal.pone.0099801 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Probst AJ, Holman H-YN, DeSantis TZ, Andersen GL, Birarda G, Bechtel HA, Piceno YM, Sonnleitner M, Venkateswaran K, Moissl-Eichinger C (2013) Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. The ISME journal 7:635–651.  https://doi.org/10.1038/ismej.2012.133 CrossRefPubMedGoogle Scholar
  79. Probst AJ, Moissl-Eichinger C (2015) “Altiarchaeales”: uncultivated Archaea from the subsurface. Life 5:1381–1395.  https://doi.org/10.3390/life5021381 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M (2014b) Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun 5:5497.  https://doi.org/10.1038/ncomms6497 CrossRefPubMedGoogle Scholar
  81. Puente-Sánchez F, Moreno-Paz M, Rivas L, Cruz-Gil P, García-Villadangos M, Gómez M, Postigo M, Garrido P, González-Toril E, Briones C (2014) Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology 12:34–47.  https://doi.org/10.1111/gbi.12065
  82. Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Itävaara M (2015) Heterotrophic communities supplied by ancient organic carbon predominate in deep Fennoscandian bedrock fluids. Microb Ecol 69:319–332.  https://doi.org/10.1007/s00248-014-0490-6
  83. Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Kietäväinen R, Itävaara M (2013) Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiol Ecol 85:324–337.  https://doi.org/10.1111/1574-6941.12126 CrossRefPubMedGoogle Scholar
  84. Rajala P, Bomberg M (2017) Reactivation of deep subsurface microbial community in response to methane or methanol amendment. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.00431
  85. Rajala P, Bomberg M, Kietäväinen R, Kukkonen I, Ahonen L, Nyyssönen M, Itävaara M (2015) Rapid reactivation of deep subsurface microbes in the presence of C-1 compounds. Microorganisms 3:17–33.  https://doi.org/10.3389/fmicb.2017.00431 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton AS (2017) Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.00056
  87. Rogers J, Bennett P, Choi W (1998) Feldspars as a source of nutrients for microorganisms. Am Mineral 83:1532–1540.  https://doi.org/10.2138/am-1998-11-1241 CrossRefGoogle Scholar
  88. Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152.  https://doi.org/10.1128/AEM.01133-07 CrossRefPubMedGoogle Scholar
  89. Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe (II) in biotite. Appl Environ Microbiol 78:5746–5752.  https://doi.org/10.1128/AEM.01034-12 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248.  https://doi.org/10.2113/gsecongeo.104.8.1235 CrossRefGoogle Scholar
  91. Sohlberg E, Bomberg M, Miettinen H, Nyyssönen M, Salavirta H, Vikman M, Itävaara M (2015) Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00573
  92. Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–455.  https://doi.org/10.1126/science.270.5235.450 CrossRefGoogle Scholar
  93. Suzuki S, Si I, Wu A, Cheung A, Tenney A, Wanger G, Kuenen JG, Nealson KH (2013) Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci 110:15336–15341.  https://doi.org/10.1073/pnas.1302426110 CrossRefPubMedGoogle Scholar
  94. Suzuki Y, Konno U, Fukuda A, Komatsu DD, Hirota A, Watanabe K, Togo Y, Morikawa N, Hagiwara H, Aosai D (2014) Biogeochemical signals from deep microbial life in terrestrial crust. PLoS One 9:e113063.  https://doi.org/10.1371/journal.pone.0113063 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Swanner ED, Nell RM, Templeton AS (2011) Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson mine, CO. Chem Geol 284:339–350.  https://doi.org/10.1016/j.chemgeo.2011.03.015 CrossRefGoogle Scholar
  96. Swanner ED, Templeton AS (2011) Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at Henderson Mine, CO. Front Microbiol 2.  https://doi.org/10.3389/fmicb.2011.00254
  97. Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760.  https://doi.org/10.1128/AEM.67.21.5750-5760.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541.  https://doi.org/10.1007/s00253-013-4954-2 CrossRefPubMedGoogle Scholar
  99. Vreeland RH, Piselli Jr AF, McDonnough S, Meyers S (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331.  https://doi.org/10.1007/s007920050075 CrossRefPubMedGoogle Scholar
  100. Whelan J, Oremland R, Tarafa M, Smith R, Howarth R, Lee C (1986) Evidence for sulfate-reducing and methane-producing microorganisms in sediments from sites 618, 619, and 622. In: Bouma AH CJ, Meyer AW et al (ed) Initial reports of the deep sea drilling project, vol 96. US Govt Printing Office, Washington, pp 767–775. doi: https://doi.org/10.2973/dsdp.proc.96.147.1986
  101. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583.  https://doi.org/10.1073/pnas.95.12.6578 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wilkins M, Daly R, Mouser P, Trexler R, Wrighton K, Sharma S, Cole D, Biddle J, Denis E, Fredrickson J, Kieft T, Onstott T, Petersen L, Pfiffner S, Phelps T, Schrenk M (2014) Trends and future challenges in sampling the deep terrestrial biosphere. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2014.00481
  103. Wouters K, Moors H, Boven P, Leys N (2013) Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water. FEMS Microbiol Ecol 86:458–473.  https://doi.org/10.1111/1574-6941.12171 CrossRefPubMedGoogle Scholar
  104. Wu X, Holmfeldt K, Hubalek V, Lundin D, Åström M, Bertilsson S, Dopson M (2015) Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. The Isme Journal 10:1192–1203.  https://doi.org/10.1038/ismej.2015.185 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wu X, Pedersen K, Edlund J, Eriksson L, Åström M, Andersson AF, Bertilsson S, Dopson M (2017) Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5:37.  https://doi.org/10.1186/s40168-017-0253-y CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zhang G, Dong H, Jiang H, Xu Z, Eberl DD (2006) Unique microbial community in drilling fluids from Chinese continental scientific drilling. Geomicrobiol J 23:499–514.  https://doi.org/10.1080/01490450600875860 CrossRefGoogle Scholar
  107. Zhang G, Dong H, Xu Z, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl Environ Microbiol 71:3213–3227.  https://doi.org/10.1128/AEM.71.6.3213-3227.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zinke LA, Mullis MM, Bird JT, Marshall IP, Jørgensen BB, Lloyd KG, Amend JP, Kiel Reese B (2017) Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environ Microbiol Rep 9:528–536.  https://doi.org/10.1111/1758-2229.12578 CrossRefPubMedGoogle Scholar
  109. Zobell CE (1938) Studies on the bacterial flora of marine bottom sediments. J Sediment Res 8:10–18.  https://doi.org/10.1306/D4268FD6-2B26-11D7-8648000102C1865D CrossRefGoogle Scholar
  110. ZoBell CE, Anderson DQ (1936) Vertical distribution of bacteria in marine sediments. AAPG Bull 20:258–269Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Escudero
    • 1
  • Mónica Oggerin
    • 1
    • 2
  • Ricardo Amils
    • 1
    • 3
  1. 1.Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM)Universidad Autónoma de MadridMadridSpain
  2. 2.Max Planck Institute for Marine MicrobiologyBremenGermany
  3. 3.Centro de Astrobiología (CAB, INTA-CSIC)Torrejón de ArdozSpain

Personalised recommendations