Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal

Abstract

Effluents from petroleum refineries contain a toxic mixture of sulfide, nitrogen, and phenolic compounds that require adequate treatment for their removal. Biological denitrification processes are a cost-effective option for the treatment of these effluents, but the knowledge on the microbial interactions in simultaneous sulfide and phenol oxidation in denitrifying reactors is still very limited. In this work, microbial community structure and macrostructure of granular biomass were studied in three denitrifying reactors treating a mixture of inorganic (sulfide) and organic (p-cresol) electron donors for their simultaneous removal. The differences in the available substrates resulted in different community assemblies that supported high removal efficiencies, indicating the community adaptation capacity to the fluctuating compositions of industrial effluents. The three reactors were dominated by nitrate reducing and denitrifying bacteria where Thiobacillus spp. were the prevalent denitrifying organisms. The toxicity and lack of adequate substrates caused the endogenous decay of the biomass, leading to release of organic matter that maintained a diverse although not very abundant group of heterotrophs. The endogenous digestion of the granules caused the degradation of its macrostructure, which should be considered to further develop the denitrification process in sulfur-based granular reactors for treatment of industrial wastewater with toxic compounds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alphenaar PA, Groeneveld N, Van Aelst AC (1994) Scanning electron microscopical method for internal structure analysis of anaerobic granular sludge. Micron 25:129–133. https://doi.org/10.1016/0968-4328(94)90037-X

    Article  Google Scholar 

  2. Autenrieth RL, Bonner JS, Akgerman A, Okaygun M, McCreary EM (1991) Biodegradation of phenolic wastes. J Hazard Mater 28:29–53. https://doi.org/10.1016/0304-3894(91)87004-L

    Article  CAS  Google Scholar 

  3. Beristain-Cardoso R, Texier A-C, Alpuche-Solís Á, Gómez J, Razo-Flores E (2009) Phenol and sulfide oxidation in a denitrifying biofilm reactor and its microbial community analysis. Process Biochem 44:23–28. https://doi.org/10.1016/j.procbio.2008.09.002

    Article  CAS  Google Scholar 

  4. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Luo Q, Wang D, Gao J, Wei Z, Wang Z, Zhou H, Mazumder A (2015) Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. Environ Pollut 206:64–72. https://doi.org/10.1016/j.envpol.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  6. Collins G, O’Connor L, Mahony T, Gieseke A, de Beer D, O’Flaherty V (2005) Distribution, localization, and phylogeny of abundant populations of Crenarchaeota in anaerobic granular sludge. Appl. Environ. Microbiol. 71:7523–7527. https://doi.org/10.1128/AEM.71.11.7523-7527.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Díaz E, Amils R, Sanz JL (2003) Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48:57–64

    Article  PubMed  Google Scholar 

  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Felföldi T, Székely AJ, Gorál R, Barkács K, Scheirich G, András J, Rácz A, Márialigeti K (2010) Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour Technol 101:3406–3414. https://doi.org/10.1016/j.biortech.2009.12.053

    Article  CAS  PubMed  Google Scholar 

  11. Fernández N, Sierra-Alvarez R, Field JA, Amils R, Sanz JL (2008) Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere 70:462–474. https://doi.org/10.1016/j.chemosphere.2007.06.062

    Article  CAS  PubMed  Google Scholar 

  12. Frost TM, Carpenter SR, Ives AR, Kratz TK (1995) Species compensation and complementarity in ecosystem function. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 224–239

    Google Scholar 

  13. Ho KL, Chen YY, Lee DJ (2010) Functional consortia for cresol-degrading activated sludges: toxicity-to-extinction approach. Bioresour Technol 101:9000–9005. https://doi.org/10.1016/j.biortech.2010.06.148

    Article  CAS  PubMed  Google Scholar 

  14. Kellermann C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59:583–588. https://doi.org/10.1099/ijs.0.002808-0

    Article  CAS  PubMed  Google Scholar 

  15. Kelly DP, Harrison AH (1989) Genus Thiobacillus. In: Staley JT, Bryant MP, Pfenning N, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 2, Second Edi edn. Williams & Williams, Baltimore, pp 1842–1858

    Google Scholar 

  16. Koenig A, Zhang T, Liu L-H, Fang HHP (2005) Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58:1041–1047. https://doi.org/10.1016/j.chemosphere.2004.09.040

    Article  CAS  PubMed  Google Scholar 

  17. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, pp 115–175

    Google Scholar 

  18. Lee C-YY, Shin H-SS, Hwang SJ (2004) Characteristics of granular sludge in a single upflow sludge blanket reactor treating high levels of nitrate and simple organic compounds. Water Sci Technol 50:217–224

    Article  CAS  PubMed  Google Scholar 

  19. Liu C, Han K, Lee DJ, Wang Q (2016) Simultaneous biological removal of phenol, sulfide, and nitrate using expanded granular sludge bed reactor. Appl Microbiol Biotechnol 100:4211–4217. https://doi.org/10.1007/s00253-016-7293-2

    Article  CAS  PubMed  Google Scholar 

  20. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. https://doi.org/10.1093/nar/gkh293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838. https://doi.org/10.1038/ismej.2012.160

    Article  CAS  PubMed  Google Scholar 

  22. Moon HS, Shin D, Nam K, Kim JY, Asce AM (2010) Distribution of the microbial community structure in S sulfur-based autotrophic denitrification columns. J Environ Eng 136:481–487. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000181

    Article  CAS  Google Scholar 

  23. Oenema O, Roest CW (1998) Nitrogen and phosphorus losses from agriculture into surface waters: the effects of policies and measures in the Netherlands. Water Sci Technol 37:19–30. https://doi.org/10.1016/S0273-1223(98)00052-3

    Article  CAS  Google Scholar 

  24. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.4-6.

  25. Olmos A, Olguin P, Fajardo C, Razo E, Monroy O (2004) Physicochemical characterization of spent caustic from the OXIMER process and sour waters from mexican oil refineries. Energy and Fuels 18:302–304. https://doi.org/10.1021/ef030053c

    Article  CAS  Google Scholar 

  26. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. https://doi.org/10.1128/AEM.68.6.3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  30. Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M (2014) Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Appl Microbiol Biotechnol 98:2015–2027. https://doi.org/10.1007/s00253-013-5378-8

    Article  CAS  PubMed  Google Scholar 

  31. Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. https://doi.org/10.1002/bit.260400506

    Article  CAS  PubMed  Google Scholar 

  32. Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321. https://doi.org/10.1016/j.watres.2004.04.035

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz G, Jeison D, Chamy R (2006) Development of denitrifying and methanogenic activities in USB reactors for the treatment of wastewater: effect of COD/N ratio. Process Biochem 41:1338–1342. https://doi.org/10.1016/j.procbio.2006.01.007

    Article  CAS  Google Scholar 

  34. Show K-Y, Lee D-J, Pan X (2013) Simultaneous biological removal of nitrogen-sulfur-carbon: recent advances and challenges. Biotechnol Adv 31:409–420. https://doi.org/10.1016/j.biotechadv.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  35. Sierra-Alvarez R, Guerrero F, Rowlette P, Freeman S, Field JAA, Rowiette P, Freeman S, Field JAA (2005) Comparison of chemo-, hetero- and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol 52:337–342

    Article  CAS  PubMed  Google Scholar 

  36. Suarez L, Brender JD, Langlois PH, Zhan FB, Moody K (2007) Maternal exposures to hazardous waste sites and industrial facilities and risk of neural tube defects in offspring. Ann Epidemiol 17:772–777. https://doi.org/10.1016/j.annepidem.2007.05.005

    Article  PubMed  Google Scholar 

  37. Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39:4101–4109. https://doi.org/10.1016/j.watres.2005.07.022

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams D, Brown JW (2010) Archaeal diversity in a municipal wastewater sludge. KBM. J. Biol. 1:30–33. https://doi.org/10.5147/ajb.vli2.6

    Article  Google Scholar 

  40. Yang W, Lu H, Khanal SK, Zhao Q, Meng L, Chen G-HH (2016) Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Res 104:507–519. https://doi.org/10.1016/j.watres.2016.08.049

    Article  CAS  PubMed  Google Scholar 

  41. Yoda M, Nishimura S (1997) Controling granular sludge flotation in UASB reactors. Water Sci Technol 36:165–173

    Article  CAS  Google Scholar 

  42. Zhang L, Zhang C, Hu C, Liu H, Bai Y, Qu J (2015) Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors. Water Res 85:422–431. https://doi.org/10.1016/j.watres.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Chen C, Wang A, Liu L-H, Ho K-L, Ren N, Lee D-J (2011) Rapid acclimation of methanogenic granular sludge into denitrifying sulfide removal granules. Bioresour Technol 102:5244–5247. https://doi.org/10.1016/j.biortech.2011.01.049

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by a grant from the Spanish Ministerio de Educacion y Ciencia to J.L. Sanz (CTM2006-04131/TECNO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuria Fernandez-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Gonzalez, N., Sierra-Alvarez, R., Field, J.A. et al. Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal. Int Microbiol 22, 305–316 (2019). https://doi.org/10.1007/s10123-018-00050-4

Download citation

Keywords

  • Thiobacillus
  • Granular denitrifying reactor
  • Hazardous waste
  • Petroleum refinery wastewater
  • Endogenous decay
  • Nitrogen transformations