International Microbiology

, Volume 22, Issue 1, pp 143–154 | Cite as

An Insight into the Constitutive Proteome Throughout Leishmania donovani Promastigote Growth and Differentiation

  • Pedro J. AlcoleaEmail author
  • Ana Alonso
  • Francisco García-Tabares
  • María del Carmen Mena
  • Sergio Ciordia
  • Vicente Larraga
Original Article


Anthroponotic visceral leishmaniasis is a life-threatening disease caused by Leishmania donovani (Kinetoplastida: Trypanosomatidae) in East Africa and the Indian subcontinent. Unlike promastigote growth and differentiation in the sand fly gut or in axenic culture, L. donovani promastigote-into-amastigote development has been studied by high-throughput gene expression profiling. In this study, we have identified abundant constitutive proteins in axenically cultured promastigotes by two-dimension electrophoresis and matrix-assisted laser desorption-ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. Most proteins involved in the trypanothione-based redox antioxidant system are expressed constitutively throughout axenic L. donovani promastigote growth and differentiation (tryparedoxin, trypanothione peroxidase, generic peroxidoxin, iron-superoxide dismutase, and elongation factor 1β). These findings are in agreement with previous data on other Old World species (i.e., L. major and L. infantum), whereas New World species (i.e., L. amazonensis and L. pifanoi) and Crithidia fasciculata show different expression patterns.


Leishmania donovani Constitutive proteins 2DE MALDI-TOF/TOF Elongation factor 1β Peroxiredoxins Tryparedoxin peroxidase Iron superoxide dismutase 



We acknowledge Alfredo Toraño and Mercedes Domínguez for kind supply of the L. donovani strain used in this study. The CIB-CSIC Laboratory of Molecular Parasitology thanks the Ramón Areces Foundation (2016 call) for a contract. The CNB-CSIC Proteomics Facility belongs to ProteoRed (PRB2-ISCIII) and has been funded with grant PT13/0001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

10123_2018_36_MOESM1_ESM.xlsx (19 kb)
ESM 1 (XLSX 18 kb)


  1. Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86CrossRefPubMedGoogle Scholar
  2. Alcolea PJ, Alonso A, Gomez MJ, Moreno I, Dominguez M, Parro V, Larraga V (2010) Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. Int J Parasitol 40:1497–1516CrossRefPubMedGoogle Scholar
  3. Alcolea PJ, Alonso A, Larraga V (2011a) Genome-wide gene expression profile induced by exposure to cadmium acetate in Leishmania infantum promastigotes. Int Microbiol 14:1–11PubMedGoogle Scholar
  4. Alcolea PJ, Alonso A, Larraga V (2011b) Proteome profiling of Leishmania infantum promastigotes. J Eukaryot Microbiol 58:352–358CrossRefPubMedGoogle Scholar
  5. Alcolea PJ, Alonso A, Garcia-Tabares F, Torano A, Larraga V (2014a) An insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 9:e113837CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alcolea PJ, Alonso A, Gomez MJ, Postigo M, Molina R, Jimenez M, Larraga V (2014b) Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte. BMC Genomics 15:849CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alcolea PJ, Alonso A, Dominguez M, Parro V, Jimenez M, Molina R, Larraga V (2016a) Influence of the microenvironment in the transcriptome of Leishmania infantum promastigotes: Sand Fly versus culture. PLoS Negl Trop Dis 10:e0004693CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alcolea PJ, Alonso A, Garcia-Tabares F, Mena MD, Ciordia S, Larraga V (2016b) Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Trop 158:240–247CrossRefPubMedGoogle Scholar
  9. Aphasizhev R, Aphasizheva I, Nelson RE, Gao G, Simpson AM, Kang X, Falick AM, Sbicego S, Simpson L (2003) Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J 22:913–924CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coelho EA, Costa LE, Lage DP, Martins VT, Garde E, de Jesus Pereira NC, Lopes EG, Borges LF, Duarte MC, Menezes-Souza D, de Magalhaes-Soares DF, Chavez-Fumagalli MA, Soto M, Tavares CA (2016) Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet Parasitol 215:63–71CrossRefPubMedGoogle Scholar
  11. Day BJ (2009) Catalase and glutathione peroxidase mimics. Biochem Pharmacol 77:285–296CrossRefPubMedGoogle Scholar
  12. Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, Smith DF (2009) Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis 3:e476CrossRefPubMedPubMedCentralGoogle Scholar
  13. Descoteaux A, Avila HA, Zhang K, Turco SJ, Beverley SM (2002) Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J 21:4458–4469CrossRefPubMedPubMedCentralGoogle Scholar
  14. Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239–243CrossRefGoogle Scholar
  15. Dutta M, Delhi P, Sinha KM, Banerjee R, Datta AK (2001) Lack of abundance of cytoplasmic cyclosporin A-binding protein renders free-living Leishmania donovani resistant to cyclosporin A. J Biol Chem 276:19294–19300CrossRefPubMedGoogle Scholar
  16. Flohe L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984CrossRefPubMedGoogle Scholar
  17. Gretes MC, Poole LB, Karplus PA (2012) Peroxiredoxins in parasites. Antioxid Redox Signal 17:608–633CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218CrossRefPubMedGoogle Scholar
  19. Kabututu Z, Martin SK, Nozaki T, Kawazu S, Okada T, Munday CJ, Duszenko M, Lazarus M, Thuita LW, Urade Y, Kubata BK (2002) Prostaglandin production from arachidonic acid and evidence for a 9,11-endoperoxide prostaglandin H2 reductase in Leishmania. Int J Parasitol 32:1693–1700CrossRefPubMedGoogle Scholar
  20. Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25:515–525CrossRefPubMedPubMedCentralGoogle Scholar
  21. Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35-46.Google Scholar
  22. Levick MP, Tetaud E, Fairlamb AH, Blackwell JM (1998) Identification and characterisation of a functional peroxidoxin from Leishmania major. Mol Biochem Parasitol 96:125–137CrossRefPubMedGoogle Scholar
  23. Li Z, Lindsay ME, Motyka SA, Englund PT, Wang CC (2008) Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 4:e1000048CrossRefPubMedPubMedCentralGoogle Scholar
  24. MacDonald SM, Langdon JM, Greenlee BM, Kagey-Sobotka A, Lichtenstein LM (1991) IgE-dependent histamine-releasing factors. A brief review. Int Arch Allergy Appl Immunol 94:144–147CrossRefPubMedGoogle Scholar
  25. Magalhaes RD, Duarte MC, Mattos EC, Martins VT, Lage PS, Chavez-Fumagalli MA, Lage DP, Menezes-Souza D, Regis WC, Manso Alves MJ, Soto M, Tavares CA, Nagen RA, Coelho EA (2014) Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 8:e2764CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nirujogi RS, Pawar H, Renuse S, Kumar P, Chavan S, Sathe G, Sharma J, Khobragade S, Pande J, Modak B, Prasad TS, Harsha HC, Patole MS, Pandey A (2014) Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteome 97:48–61CrossRefGoogle Scholar
  27. Panigrahi AK, Schnaufer A, Carmean N, Igo RP Jr, Gygi SP, Ernst NL, Palazzo SS, Weston DS, Aebersold R, Salavati R, Stuart KD (2001) Four related proteins of the Trypanosoma brucei RNA editing complex. Mol Cell Biol 21:6833–6840CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pawar H, Sahasrabuddhe NA, Renuse S, Keerthikumar S, Sharma J, Kumar GS, Venugopal A, Sekhar NR, Kelkar DS, Nemade H, Khobragade SN, Muthusamy B, Kandasamy K, Harsha HC, Chaerkady R, Patole MS, Pandey A (2012) A proteogenomic approach to map the proteome of an unsequenced pathogen - Leishmania donovani. Proteomics 12:832–844CrossRefPubMedGoogle Scholar
  29. Rastrojo A, Carrasco-Ramiro F, Martin D, Crespillo A, Reguera RM, Aguado B, Requena JM (2013) The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics 14:223CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B (2009) Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 165:32–47CrossRefPubMedGoogle Scholar
  31. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602CrossRefPubMedGoogle Scholar
  32. Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152:53–65CrossRefPubMedGoogle Scholar
  33. Sharma V, Sharma P, Selvapandiyan A, Salotra P (2016) Leishmania donovani-specific Ub-related modifier-1: an early endosome-associated ubiquitin-like conjugation in Leishmania donovani. Mol Microbiol 99:597–610CrossRefPubMedGoogle Scholar
  34. Srividya G, Duncan R, Sharma P, Raju BV, Nakhasi HL, Salotra P (2007) Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134:1527–1539CrossRefPubMedGoogle Scholar
  35. Tsigankov P, Gherardini PF, Helmer-Citterich M, Spath GF, Zilberstein D (2013) Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res 12:3405–3412CrossRefPubMedGoogle Scholar
  36. Vickers TJ, Fairlamb AH (2004) Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem 279:27246–27256CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vickers TJ, Wyllie S, Fairlamb AH (2004) Leishmania major elongation factor 1B complex has trypanothione S-transferase and peroxidase activity. J Biol Chem 279:49003–49009CrossRefPubMedGoogle Scholar
  38. Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolome S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226CrossRefPubMedPubMedCentralGoogle Scholar
  39. Walker J, Acestor N, Gongora R, Quadroni M, Segura I, Fasel N, Saravia NG (2006) Comparative protein profiling identifies elongation factor-1beta and tryparedoxin peroxidase as factors associated with metastasis in Leishmania guyanensis. Mol Biochem Parasitol 145:254–264CrossRefPubMedGoogle Scholar
  40. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143CrossRefPubMedGoogle Scholar
  41. Westrop GD, Williams RA, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH (2015) Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One 10:e0136891CrossRefPubMedPubMedCentralGoogle Scholar
  42. WHO (2010) Report of a meeting of the WHO expert committee on the control of Leishmaniases. In: GenevaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Parasitology, Department of Cellular and Molecular BiologyCentro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas)MadridSpain
  2. 2.Service of Proteomics and GenomicsCentro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas)MadridSpain
  3. 3.Proteomics UnitCentro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas)MadridSpain

Personalised recommendations