Gastric Cancer

, Volume 12, Issue 4, pp 189–197 | Cite as

Current understanding of SPEM and its standing in the preneoplastic process

  • Victoria G. Weis
  • James R. Goldenring
Review Article

Abstract

Gastric cancer is the second leading cause of cancer-related death worldwide, but the details of gastric carcinogenesis remain unclear. In humans, two preneoplastic metaplasias are associated with the precancerous stomach: intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM). While mouse models of Helicobacter sp. infection have not shown intestinal metaplasia, a number of mouse models lead to the evolution of SPEM. In this review, we summarize increasing data that indicates that SPEM arises in the setting of parietal cell loss, either following acute druginduced oxyntic atrophy or in chronic oxyntic atrophy associated with H. felis infection. Importantly, recent investigations support the origin of SPEM through transdifferentiation from mature chief cells following parietal cell loss. Novel biomarkers of SPEM, such as HE4, hold promise as specific markers of the metaplastic process distinct from normal gastric lineages. Staining with HE4 in humans and other studies in gerbils suggest that SPEM arises initially in the human stomach following parietal cell loss and then further evolves into intestinal metaplasia, likely in association with chronic inflammation. Further studies are needed to broaden our knowledge of metaplasia and early cancer-specific biomarkers that could give insights into both lineage derivation and preneoplasia detection.

Key words

Gastric adenocarcinoma Metaplasia SPEM Intestinal metaplasia 

References

  1. 1.
    Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 1999;83:18–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Blaser M, Parsonnet J. Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest 1994;94:4–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Jain RN, Brunkan CS, Chew CS, Samuelson LC. Gene expression profiling of gastrin target genes in parietal cells. Physiol Genomics 2006;24:124–132.PubMedGoogle Scholar
  4. 4.
    Beauchamp RD, Barnard JA, McCutchen CM, Cherner JA, Coffey RJ Jr. Localization of transforming growth factor alpha and its receptor in gastric mucosal cells. J Clin Invest 1989;84:1017–1023.CrossRefPubMedGoogle Scholar
  5. 5.
    Murayama Y, Miyagawa JI, Higashiyama S, Kondo S, Yabu M, Kanayama S, et al. Localization of heparin-binding epidermal growth factor-like growth factor in human gastric mucosa. Gastroenterology 1995;109:1051–1059.CrossRefPubMedGoogle Scholar
  6. 6.
    Abe S, Sasano H, Katoh K, Ohara S, Arikawa T, Noguchi T, et al. Immunohistochemical studies on EGF family growth factors in normal and ulcerated human gastric mucosa. Dig Dis Sci 1997;42:1199–1209.CrossRefPubMedGoogle Scholar
  7. 7.
    Li Q, Karam SM, Gordon JI. Diphtheria toxin-mediated ablation of parietal cells in the stomach of transgenic mice. J Biol Chem 1996;271:3671–3676.CrossRefPubMedGoogle Scholar
  8. 8.
    El-Zimaity HMT, Ota H, Graham DY, Akamatsu T, Katsuyama T. Patterns of gastric atrophy in intestinal type gastric carcinoma. Cancer 2002;94:1428–1436.CrossRefPubMedGoogle Scholar
  9. 9.
    Correa P. A human model of gastric carcinogenesis. Cancer Res 1988;48:3554–3560.PubMedGoogle Scholar
  10. 10.
    Filipe MI, Munoz N, Matko I, Kato I, Pompe-Kirn V, Juersek A, et al. Intestinal metaplasia types and the risk of gastric cancer: a cohort study in Slovenia. Int J Cancer 1994;57:324–329.CrossRefPubMedGoogle Scholar
  11. 11.
    Hattori T. Development of adenocarcinomas in the stomach. Cancer 1986;57:1528–1534.CrossRefPubMedGoogle Scholar
  12. 12.
    Takizawa T, Koike M. Minute gastric carcinoma from pathomorphological aspect — reconsideration concerning histogenesis of gastric carcinomas. Stomach and Intestine 1998;23:791–800.Google Scholar
  13. 13.
    Hattori T, Fujita S. Tritiated thymidine autotradiographic study on histogenesis and spreading of intestinal metaplasia in human stomach. Pathol Res Pract 1979;164:224–237.PubMedGoogle Scholar
  14. 14.
    Hattori T, Helpap B, Gedigk P. The morphology and cell kinetics of pseudopyloric glands. Virchows Arch B Cell Pathol Incl Mol Pathol 1982;39:31–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Xia HH, Kalantar JS, Talley NJ, Wyatt JM, Adams S, Cheung K, et al. Antral-type mucosa in the gastric incisura, body and fundus (antralization): a link between Helicobacter pylori infection and intestinal metaplasia. Am J Gastroenterol 2000;95:114–121.CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest 1999;79:639–646.PubMedGoogle Scholar
  17. 17.
    Yamaguchi H, Goldenring JR, Kaminishi M, Lee JR. Association of spasmolytic polypeptide expressing metaplasia (SPEM) with carcinogen administration and oxyntic atrophy in rats. Lab Invest 2002;82:1045–1052.PubMedGoogle Scholar
  18. 18.
    Halldorsdottir AM, Sigurdardottir M, Jonasson JG, Oddsdottir M, Magnusson J, Lee JR, et al. Spasmolytic polypeptide expressing metaplasia (SPEM) associated with gastric cancer in Iceland Dig Dis Sci 2003;48:431–441.Google Scholar
  19. 19.
    Morson BC. Intestinal metaplasia of the gastric mucosa. Br J Cancer 1955;9:365–376.PubMedGoogle Scholar
  20. 20.
    Ectors N, Dixon MF. The prognostic value of sulphomucin positive intestinal metaplasia in the development of gastric cancer. Histopathology 1986;10:1271–1277.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamaguchi H, Goldenring JR, Kaminishi. M., Lee JR. Identification of spasmolytic polypeptide expressing metaplasia (SPEM) in remnant gastric cancer and surveillance postgastrectomy biopsies. Dig Dis Sci 2001;47:573–578.CrossRefGoogle Scholar
  22. 22.
    Wang TC, Goldenring JR, Dangler C, Ito S, Mueller A, Jeon WK, et al. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology 1998;114:675–689.CrossRefPubMedGoogle Scholar
  23. 23.
    Fox JG, Li X, Cahill RJ, Andrutis K, Rustgi AK, Odze R, et al. Hypertrophic gastropathy in Helicobacter felis-infected wild type C57BL/6 mice and p53 hemizygous transgenic mice. Gastroenterology 1996;110:155–166.CrossRefPubMedGoogle Scholar
  24. 24.
    Fox JG, Wang TC, Rogers AB, Poutahidis T, Ge Z, Taylor N, et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology 2003;124:1879–1890.CrossRefPubMedGoogle Scholar
  25. 25.
    Nomura S, Yamaguchi H, Wang TC, Lee JR, Goldenring JR. Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild type and gastrin deficient mice. Am J Physiol Gastrointest Liver Physiol 2004;288:G362–G375.CrossRefGoogle Scholar
  26. 26.
    Goldenring JR, Ray GS, Coffey RJ, Meunier PC, Haley PJ, Barnes TB, et al. Reversible drug-induced oxyntic atrophy in rats. Gastroenterology 2000;118:1080–1093.CrossRefPubMedGoogle Scholar
  27. 27.
    Fox JG, Blanco M, Murphy JC, Taylor NS, Lee A, Kabok Z, et al. Local and systemic immune responses in murine Helicobacter felis active chronic gastritis. Infect Immun 1993;61:2309–2315.PubMedGoogle Scholar
  28. 28.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cells. Anat Rec 1993;236:259–279.CrossRefPubMedGoogle Scholar
  29. 29.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec 1993;236:280–296.CrossRefPubMedGoogle Scholar
  30. 30.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat Rec 1993;236:297–313.CrossRefPubMedGoogle Scholar
  31. 31.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. V. Behavior of entero-endocrine and caveolated cells: general conclusions of cell kinetics in the oxyntic epithelium. Anat Rec 1993;236:333–340.CrossRefPubMedGoogle Scholar
  32. 32.
    Karam SM, Straiton T, Hassan WM, Leblond CP. Defining epithelial cell progenitors in the human oxyntic mucosa. Stem Cells 2003;21:322–336.CrossRefPubMedGoogle Scholar
  33. 33.
    Ramsey VG, Doherty JM, Chen CC, Stappenbeck TS, Konieczny SF, Mills JC. The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1. Development 2007;134:211–222.CrossRefPubMedGoogle Scholar
  34. 34.
    Nomura S, Baxter S, Yamaguchi T, Leys C, Vartapetian AB, Fox JG, et al. Spasmolytic polypeptide expressing metaplasia (SPEM) to pre-neoplasia in H. felis-infected mice. Gastroenterology 2004;127:582–594.CrossRefPubMedGoogle Scholar
  35. 35.
    Nozaki K, Ogawa M, Williams JA, LaFleur BJ, Ng V, Drapkin RI, et al. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology 2008:511–521.Google Scholar
  36. 36.
    Hirayama F, Takagi S, Kusuhara H, Iwao E, Yokoyama Y, Ikeda Y. Induction of gastric ulcer and intestinal metaplasia in Mongolian gerbils infected with Helicobacter pylori. J Gastroenterol 1996;31:755–757.CrossRefPubMedGoogle Scholar
  37. 37.
    Honda S, Fujioka T, Tokieda M, Gotoh T, Nishizono A, Nasu M. Gastric ulcer, atrophic gastritis, and intestinal metaplasia caused by Helicobacter pylori infection in Mongolian gerbils. Scand J Gastroenterol 1998;33:454–460.CrossRefPubMedGoogle Scholar
  38. 38.
    Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology 1998;115:642–648.CrossRefPubMedGoogle Scholar
  39. 39.
    Honda S, Fujioka T, Tokieda M, Satoh R, Nishizono A, Nasu M. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res 1998;58:4255–4259.PubMedGoogle Scholar
  40. 40.
    Yoshizawa N, Takenaka Y, Yamaguchi H, Tetsuya T, Tanaka H, Tatematsu M, et al. Emergence of spasmolytic polypeptideexpressing metaplasia in Mongolian gerbils infected with Helicobacter pylori. Lab Invest 2007;87:1265–1276.CrossRefPubMedGoogle Scholar
  41. 41.
    El-Zimaity HMT, Ramchatesingh J, Saeed MA, Graham DY. Gastric intestinal metaplasia: subtypes and natural history. J Clin Pathol 2001;54:679–683.PubMedGoogle Scholar
  42. 42.
    Sugimura T, Matsukura N, Sato S. Intestinal metaplasia of the stomach as a precancerous stage. IARC Sci Publ 1982:515–530.Google Scholar
  43. 43.
    Lee A, O’Rourke J, De Ungria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 1997;112:1386–1397.CrossRefPubMedGoogle Scholar
  44. 44.
    Misra V, Misra S, Dwivedi M, Singh UP, Bhargava V, Gupta SC. A topographic study of Helicobacter pylori density, distribution and associated gastritis. J Gastroenterol Hepatol 2000;15:737–743.CrossRefPubMedGoogle Scholar
  45. 45.
    Johnson LR. New aspects of the trophic actions of gastrointestinal hormones. Gastroenterology 1977;72:788–792.PubMedGoogle Scholar
  46. 46.
    Wang TC, Koh TJ, Varro A, Cahill RJ, Dangler CA, Fox JG, et al. Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest 1996;98:1918–1929.CrossRefPubMedGoogle Scholar
  47. 47.
    Zavros Y, Eaton KA, Kang W, Rathinavelu S, Katukuri V, Kao JY, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 2005;24:2354–2366.CrossRefPubMedGoogle Scholar
  48. 48.
    Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, et al. Gastric mucosa abnormalities and tumorigenesis in mice lacking pS2 trefoil protein. Science 1996;274:259–262.CrossRefPubMedGoogle Scholar
  49. 49.
    Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J, et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 2004;126:196–207.CrossRefPubMedGoogle Scholar
  50. 50.
    Andersson K, Chen D, Mattsson H, Sundler F, Hakanson R. Physiological significance of ECL-cell histamine. Yale J Biol Med 1998;71:183–193.PubMedGoogle Scholar
  51. 51.
    Chen D, Aihara T, Zhao CM, Hakanson R, Okabe S. Differentiation of the gastric mucosa. I. Role of histamine in control of function and integrity of oxyntic mucosa: understanding gastric physiology through disruption of targeted genes. Am J Physiol Gastrointest Liver Physiol 2006;291:G539–G544.CrossRefPubMedGoogle Scholar
  52. 52.
    Hinkle KL, Samuelson LC. Lessons from genetically engineered animal models. III. Lessons learned from gastrin gene deletion in mice. Am J Physiol Gastrointest Liver Physiol 1999;277:G500–G505.Google Scholar
  53. 53.
    Jain RN, Samuelson LC. Differentiation of the gastric mucosa. II. Role of gastrin in gastric epithelial cell proliferation and maturation. Am J Physiol Gastrointest Liver Physiol 2006;291:G762–G765.CrossRefPubMedGoogle Scholar
  54. 54.
    Lindstrom E, Chen D, Norlen P, Andersson K, Hakanson R. Control of gastric acid secretion: the gastrin-ECL cell-parietal cell axis. Comp Biochem Physiol A Mol Integr Physiol 2001;128:505–514.CrossRefPubMedGoogle Scholar
  55. 55.
    Samuelson LC, Hinkle KL. Insights into the regulation of gastric acid secretion through analysis of genetically engineered mice. Annu Rev Physiol 2003;65:383–400.CrossRefPubMedGoogle Scholar
  56. 56.
    Zimmerhackl B, Wunsch E, Classen M, Schusdziarra V, Schepp W. In man histamine and muscarinergic mechanisms are essential mediators of acid secretion in response to synthetic human gastrin (1–17). Regul Pept 1993;23:583–592.CrossRefGoogle Scholar
  57. 57.
    Nozaki K, Weis V, Wang TC, Falus A, Goldenring JR. Altered gastric chief cell lineage differentiation in histamine-deficient mice. Am J Physiol Gastrointest Liver Physiol 2009;296:G1211–G1220.CrossRefPubMedGoogle Scholar
  58. 58.
    Chew CS. Inhibitory action of somatostatin on isolated gastric glands and parietal cells. Am J Physiol Gastrointest Liver Physiol 1983;245:G221–G229.Google Scholar
  59. 59.
    Ogawa M, Nomura S, Varro A, Wang TC, Goldenring JR. Altered metaplastic response of waved-2 EGF receptor mutant mice to acute oxyntic atrophy. Am J Physiol Gastrointest Liver Physiol 2006;290:G793–804.CrossRefPubMedGoogle Scholar
  60. 60.
    Nam KT, Varro A, Coffey RJ, Goldenring JR. Potentiation of oxyntic atrophy-induced gastric metaplasia in amphiregulindeficient mice. Gastroenterology 2007;132:1804–1819.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang TC, Dangler CA, Chen D, Goldenring JR, Koh T, Raychowdhury R, et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 2000;118:36–47.CrossRefPubMedGoogle Scholar
  62. 62.
    Mohammadi M, Czinn S, Redline R, Nedrud J. Helicobacterspecific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomachs of mice. J Immunol 1996;156:4729–4238.PubMedGoogle Scholar
  63. 63.
    Roth KA, Kapadia SB, Martin SM, Lorenz RG. Cellular immune responses are essential for the development of Helicobacter felis associated gastric pathology. J Immunol 1999;163:1490–1497.PubMedGoogle Scholar
  64. 64.
    Houghton J, Stoicov C, Nomura S, Carlson J, Li H, Rogers AB, et al. Gastric cancer originating from bone marrow derived cells. Science 2004;306:1568–1571.CrossRefPubMedGoogle Scholar
  65. 65.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953;6:963–968.CrossRefPubMedGoogle Scholar
  66. 66.
    McDonald SA, Greaves LC, Gutierrez-Gonzalez L, Rodriguez-Justo M, Deheragoda M, Leedham SJ, et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 2008;134:500–510.CrossRefPubMedGoogle Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2009

Authors and Affiliations

  • Victoria G. Weis
    • 1
  • James R. Goldenring
    • 1
    • 2
  1. 1.Departments of Surgery and Cell and Developmental Biology, Epithelial Biology CenterVanderbilt University School of MedicineNashvilleUSA
  2. 2.Nashville Department of Veterans Affairs Medical CenterNashvilleUSA

Personalised recommendations