Skip to main content
Log in

Friction between Strongly Compressed Polymer Brushes

  • Research Article
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes, as well as a pair of charged polymer brushes in the strongly compressed regime. The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces, shear forces, viscosities and friction coefficients as a function of separation between brushes, are presented in the study. The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime, and the dependence of viscosity on the separation distance show the similar power law of neutral brushes. Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale. Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads. However, a maximum of friction coefficients is observed for polyelectrolyte brushes, which is in contrast to the neutral brushes with monotonical dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: qiliao@iccas.ac.cn.

References

  1. Rubinstein, M.; Colby, R. H. Polymer Physics. Oxford University Press, Oxford, 2003.

    Book  Google Scholar 

  2. Chen, M.; Briscoe, W. H.; Armes, S. P.; Klein, J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 2009, 323, 1698.

    Article  CAS  PubMed  Google Scholar 

  3. Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J. F.; Jerome, R., Klein, J. Lubrication by charged polymers. Nature 2003, 425, 163.

    Article  CAS  PubMed  Google Scholar 

  4. Raviv, U.; Frey J.; Sak, R.; Laurat, P.; Tadmor, R.; Klein, J. Normal and frictional forces between surfaces bearing polyelectrolyte brushes. Langmuir 2002, 18, 7482.

    Article  CAS  Google Scholar 

  5. Sokoloff, J. B. Theory of friction between neutral polymer brushes. Macromolecules 2007, 40, 4053.

    Article  CAS  Google Scholar 

  6. Zhulina, E. B.; Rubinstein, M. Lubrication by polyelectrolyte brushes. Macromolecules 2014, 47, 5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spirin, L.; Galuschko, A.; Kreer, T.; Johner, A.; Baschnagel, J.; Binder, K. Polymer-brush lubrication in the limit of strong compression. Eur. Phys. J. E 2010, 33, 307.

    Article  CAS  PubMed  Google Scholar 

  8. Ou, Y.; Sokoloff, J. B.; Stevens, M. J. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations. Phys. Rev. E 2012, 85, 011801.

    Article  Google Scholar 

  9. Hehmeyer, O. J.; Stevens, M. J. Molecular dynamics simulations of grafted polyelectrolytes on two apposing walls. J. Chem. Phys. 2005, 122, 134909.

    Article  PubMed  Google Scholar 

  10. Kumar, N. A.; Seidel, C. Interaction between two polyelectrolyte brushes. Phys. Rev. E 2007, 76, 020801.

    Article  Google Scholar 

  11. Carrillo, J. Y.; Russano, D.; Dobrynin, A. V. Friction between brush layers of charged and neutral bottlerbrush macromolecules. molecular dynamics simulations. Langmuir 2011, 27, 14599.

    Article  CAS  PubMed  Google Scholar 

  12. Galuschko, A.; Spirin, L.; Kreer, T.; Johner, A.; Pastorino, C.; Wittmer, J.; Baschnage, J. Frictional forces between strongly compressed, nonentangled polymer brushes: molecular dynamics simulations and scaling theory. Langmuir 2009, 26, 6418.

    Article  Google Scholar 

  13. Goujon, F.; Ghouf, F.; Malfreyt, P.; Tildesley, D. J. The kinetic friction coefficient of neutral and charged polymer brushes. Soft Matter 2013, 9, 2966.

    Article  CAS  Google Scholar 

  14. Liao, Q.; Carrillo, J. Y.; Dobrynin, A. V.; Rubinstein, M. Rouse dynamics of polyelectrolyte solutions: molecular dynamics study. Macromolecules 2007, 40, 7671.

    Article  CAS  Google Scholar 

  15. Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Commun. 2022, 271, 10817.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Nos. 21574139 and 21973103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liao.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q. Friction between Strongly Compressed Polymer Brushes. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3151-3

Keywords

Navigation