Skip to main content
Log in

Structural Evolution of Ultra-High Molecular Weight Polyethylene Low-Entangled Films with Reserved Shish Crystals During Hot Stretching

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Shish crystals are crucial to achieving high performance low-dimensional ultra-high molecular weight polyethylene (UHMWPE) products. Typically, high stretch and shear flow fields are necessary for the formation of shish crystals. In this study, UHMWPE gel films with reserved shish crystals were prepared by gel molding, the structural evolution and properties of UHMWPE films stretched at temperatures of 100, 110, 120 and 130 °C were investigated by in situ small-angle X-ray scattering (SAXS)/ultra-small-angle X-ray scattering (USAXS)/wide-angle X-ray diffraction (WAXD) measurements as well as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) measurements. Our findings showed that the reserved shish crystals can facilitate the formation and structural evolution of shish-kebab crystals during the hot stretching. Additionally, the reserved shish crystals promote the structural evolution of UHMWPE films to a greater extent when stretched at 120 and 130 °C, compared to 100 and 110 °C, resulting in higher crystallinity, orientation, thermal properties, breaking strength and Young’s modulus. Compared to UHMWPE high-entangled films with reserved shish crystals prepared by compression molding, UHMWPE low-entangled films with reserved shish crystals prepared by gel molding are more effective in inducing the formation and evolution of shish-kebab crystals during the hot stretching, resulting in increased breaking strength and Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: wangzongbao@nbu.edu.cn.

References

  1. Wang, Z.; Ma, Z.; Li, L. Flow-induced crystallization of polymers: molecular and thermodynamic considerations. Macromolecules 2016, 49, 1505–1517.

    Article  Google Scholar 

  2. Pennings, A. J.; Lageveen, R.; de Vries, R. S. Hydrodynamically induced crystallization of polymers from solution. Colloid Polym. Sci. 1977, 255, 532–542.

    Article  CAS  Google Scholar 

  3. Hu, W. G.; Schmidt-Rohr, K. Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase. Polymer 2000, 41, 2979–2987.

    Article  CAS  Google Scholar 

  4. Zhao, Y.; Zhu, Y.; Sui, G.; Chen, F.; Fu, Q. Tailoring the crystalline morphology and mechanical property of olefin block copolymer via blending with a small amount of UHMWPE. Polymer 2017, 109, 137–145.

    Article  CAS  Google Scholar 

  5. Huang, Y. F.; Zhang, Z. C.; Xu, J. Z.; Xu, L.; Zhong, G. J.; He, B. X.; Li, Z. M. Simultaneously improving wear resistance and mechanical performance of ultrahigh molecular weight polyethylene via cross-linking and structural manipulation. polymer 2016, 90, 222–231.

    Article  CAS  Google Scholar 

  6. Dyer, S. R.; Lassila, L. V.; Jokinen, M.; Vallittu, P. K. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent. Mater. 2004, 20, 947–55.

    Article  CAS  PubMed  Google Scholar 

  7. Jordan, N. D.; Olley, R. H.; Bassett, D. C.; Hine, P. J.; Ward, I. M. The development of morphology during hot compaction of Tensylon high-modulus polyethylene tapes and woven cloths. Polymer 2002, 43, 3397–3404.

    Article  CAS  Google Scholar 

  8. Marissen, R. Design with ultra strong polyethylene fibers. Mater. Sci. Appl. 2011, 02, 319–330.

    CAS  Google Scholar 

  9. Porter, R. S.; Kanamoto, T.; Zachariades, A. E. Property opportunities with polyolefins: a review. Preparations and applications of high stiffness and strength by uniaxial draw. Polymer 1994, 35, 4979–4984.

    Article  CAS  Google Scholar 

  10. Shen, L.; Peng, M.; Qiao, F.; Zhang, J. L. Preparation of microporous ultra high molecular weight polyethylene (UHMWPE) by thermally induced phase separation of a UHMWPE/liquid paraffin mixture. Chinese J. Polym. Sci. 2008, 26, 653–657.

    Article  CAS  Google Scholar 

  11. Xia, L.; Xi, P.; Cheng, B. A comparative study of UHMWPE fibers prepared by flash-spinning and gel-spinning. Mater. Lett. 2015, 147, 79–81.

    Article  CAS  Google Scholar 

  12. Hu, S.; Feng, Y.; Yin, X.; Zou, X.; Qu, J. Structure and properties of UHMWPE products strengthened and toughened by pulse vibration molding at low temperature. Pollmer 2021, 229, 124026.

    Article  CAS  Google Scholar 

  13. Xiao, M.; Yu, J.; Zhu, J.; Chen, L.; Zhu, J.; Hu, Z. Effect of UHMWPE concentration on the extracting, drawing, and crystallizing properties of gel fibers. J. Mater. Sci. 2011, 46, 5690–5697.

    Article  CAS  Google Scholar 

  14. Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766–4776.

    Article  CAS  Google Scholar 

  15. Xu, L.; Chen, C.; Zhong, G. J.; Lei, J.; Xu, J. Z.; Hsiao, B. S.; Li, Z. M. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application. ACS Appl. Mater. Interfaces 2012, 4, 1521–1529.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L.; Lu, C.; Dong, P.; Wang, K.; Zhang, Q. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer 2019, 180, 121711.

    Article  CAS  Google Scholar 

  17. Kakiage, M.; Fukagawa, D. Preparation of ultrahigh-molecular-weight polyethylene fibers by combination of melt-spinning and melt-drawing. Mater. Today Commun. 2020, 23, 100864.

    Article  CAS  Google Scholar 

  18. Pennings, A. J.; Smook, J. Mechanical properties of ultra-high molecular weight polyethylene fibres in relation to structural changes and chain scissioning upon spinning and hot-drawing. J. Mater. Sci. 1984, 19, 3443–3450.

    Article  CAS  Google Scholar 

  19. Yeh, J. T.; Lin, S. C.; Tu, C. W.; Hsie, K. H.; Chang, F. C. Investigation of the drawing mechanism of UHMWPE fibers. J. Mater. Sci. 2008, 43, 4892–4900.

    Article  CAS  Google Scholar 

  20. Xu, H.; An, M.; Lv, Y.; Zhang, L.; Wang, Z. Structural development of gel-spinning UHMWPE fibers through industrial hot-drawing process analyzed by small/wide-angle X-ray scattering. Polym. Bull. 2017, 74, 1–16.

    Article  Google Scholar 

  21. An, M.; Xu, H.; Lv, Y.; Gu, Q.; Tian, F.; Wang, Z. An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultrahigh molecular weight polyethylene fibers. RSC Adv. 2016, 6, 50373–51484.

    Article  Google Scholar 

  22. Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244–254.

    Article  CAS  Google Scholar 

  23. An, M.; Lv, Y.; Yao, G.; Zhang, L.; Wang, Z. Structural transformation from shish-kebab crystals to micro-fibrils through hot stretching process of gel-spun ultra-high molecular weight polyethylene fibers with high concentration solution. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 225–238.

    Article  CAS  Google Scholar 

  24. Blais, P.; Manley, R. S. J. Morphology of Nascent Ziegler-Natta polymers. Science 1966, 153, 539–541.

    Article  CAS  PubMed  Google Scholar 

  25. Blais, P.; Manley, R. S. J. Morphology of nascent polyolefins prepared by Ziegler-Natta catalysis. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 291–334.

    Article  CAS  Google Scholar 

  26. Manley, T. G. S. J. Morphology of nascent polyethylene prepared with the catalyst VOCl3(C2H5)2AlCl. Polymer 1972, 66, 627–635.

    Google Scholar 

  27. Chen, Y.; Liang, P.; Yue, Z.; Li, W.; Yang, Y. Entanglemnnt formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts. Macromolecules 2019, 52, 7593–7602.

    Article  CAS  Google Scholar 

  28. Chen, Y.; Li, W.; Zhang, L.; Ye, C.; Tao, G.; Ren, C.; Jiang, B.; Wang, J.; Yang, Y. In situ synthesized self-reinforced HDPE/UHMWPE composites with high content of less entangled UHMWPE and high gradient-distributed oriented structures. ACS Appl. Polym. Mater. 2023, 5, 88–98.

    Article  CAS  Google Scholar 

  29. Dermeneva, M.; Ivan’kova, E.; Marikhin, V.; Myasnikova, L.; Yagovkina, M.; Radovanova, E. In X-ray analysis of compacted and sintered UHMWPE reactor powders, Journal of Physics: Conference Series, 2018; p 012058.

  30. Chanzy, H. D.; Bonjour, E.; Marchessault, R. H. Nascent structures during the polymerization of ethylene. Colloid Polym. Sci. 1974, 252, 8–14.

    Article  CAS  Google Scholar 

  31. Reneker, D. H.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A. L. Nanofiber garlands of polycaprolactone by electrospinning. Polymer 2002, 43, 6785–6794.

    Article  CAS  Google Scholar 

  32. Bawn, C. E. H.; Ledwith, A.; McFarlane, N. Anionic polymerization of ethylene oxide in dimethyl sulphoxide. Polymer 1969, 10, 653–659.

    Article  CAS  Google Scholar 

  33. Ingram, P.; Schindler, A. Morphology of as-polymerized polythylene II. Electron microscopy. Macromol. Chem. Phys. 1968, 111, 267–270.

    Article  CAS  Google Scholar 

  34. Uehara, H.; Tamura, T.; Kakiage, M.; Yamanobe, T. Nanowrinkled and nanoporous polyethylene membranes via entanglement arrangement control. Adv. Funct. Mater. 2012, 22, 2048–2057.

    Article  CAS  Google Scholar 

  35. Salari, M.; Pircheraghi, G. Interdiffusion versus crystallization at semicrystalline interfaces of sintered porous materials. Polymer 2018, 156, 54–65.

    Article  CAS  Google Scholar 

  36. Jauffrès, D.; Lame, O.; Vigier, G.; Doré, F. Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction. Polymer 2007, 48, 6374–6383.

    Article  Google Scholar 

  37. An, M. F.; Xu, H. J.; Lv, Y.; Zhang, L.; Gu, Q.; Tian, F.; Wang, Z. B. The influence of chitin nanocrystals on structural evolution of ultrahigh molecular weight polyethylene/chitin nanocrystal fibers in hot-drawing process. Chinese J. Polym. Sci. 2016, 34, 1373–1385.

    Article  CAS  Google Scholar 

  38. An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q.; Wang, Z. The effect of chitin nanocrystal on the structural transition of shish-kebab to fibrillar crystals of ultra-high molecular weight polyethylene/chitin nanocrystal fibers during hot-stretching process. Eur. Polym. J. 2017, 96, 463–473.

    Article  CAS  Google Scholar 

  39. Deng, B.; Wang, Z.; Chen, L.; Li, X. Influence of prereserved shish crystals on the structural evolution of ultrahigh-molecular weight polyethylene films during the hot stretching process. Macromolecules 2022, 55, 4600–4613.

    Article  CAS  Google Scholar 

  40. Deng, B.; Chen, L.; Zhong, Y.; Li, X.; Wang, Z. The effect of temperature on the structural evolution of ultra-high molecular weight polyethylene films with pre-reserved shish crystals during the stretching process. Polymer 2023, 267, 125690.

    Article  CAS  Google Scholar 

  41. Bartczak, Z.; Beris, P. F. M.; Wasilewski, K.; Galeski, A.; Lemstra, P. J. Deformation of the ultra-high molecular weight polyethylene melt in the plane-strain compression. J. Appl. Polym. Sci. 2012, 125, 4155–4168.

    Article  CAS  Google Scholar 

  42. Diop, M. F.; Burghardt, W. R.; Torkelson, J. M. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 2014, 55, 4948–4958.

    Article  CAS  Google Scholar 

  43. Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687–97.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, Y. F.; Xu, J. Z.; Zhang, Z. C.; Xu, L.; Li, L. B.; Li, J. F.; Li, Z. M. Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene. Chem. Eng. J. 2017, 315, 132–141.

    Article  CAS  Google Scholar 

  45. Deplancke, T.; Lame, O.; Rousset, F.; Aguili, I.; Seguela, R.; Vigier, G. Diffusion versus cocrystallization of very long polymer chains at interfaces: experimental study of sintering of UHMWPE nascent powder. Macromolecules 2013, 47, 197–207.

    Article  Google Scholar 

  46. da Silva Chagas, N. P.; Lopes da Silva Fraga, G.; Marques, M. d. F. V. Fibers of ultra-high molecular weight polyethylene obtained by gel spinning with polyalphaolefin oil. Macromol. Res. 2020, 28, 1082–1090.

    Article  CAS  Google Scholar 

  47. Tao, G. Exploring the entangled state and molecular weight of UHMWPE on the microstructure and mechanical properties of HDPE/UHMWPE blends. J. Appl. Polym. Sci. 2021, 138, 50741.

    Article  CAS  Google Scholar 

  48. Gao, P.; Mackley, M. R. Effect of presolvent loading on the ultimate drawability of ultra-high molecular weight polyethylene. Polymer 1991, 32, 3136–3139.

    Article  CAS  Google Scholar 

  49. Tian, Y.; Zhu, C.; Gong, J.; Yang, S.; Ma, J.; Xu, J. Lamellae break induced formation of shish-kebab during hot stretching of ultrahigh molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering. Polymer 2014, 55, 4299–4306.

    Article  CAS  Google Scholar 

  50. Hoogsteen, W.; Tenbrinke, G.; Pennings, A. J. DSC experiments on gel-spun polyethylene fibers. Colloid Polym. Sci. 1988, 266, 1003–1013.

    Article  CAS  Google Scholar 

  51. Hammersley, A. P.; Svensson, S. O.; Thompson, A. Calibration and correction of spatial distortions in 2D detector systems. Rev. Sci. Instr. 1995, 346, 312–321.

    Google Scholar 

  52. Wunderlich, B.; Czornyj, G. A study of equilibrium melting of polyethylene. Macromolecules 1977, 10, 906–913.

    Article  CAS  Google Scholar 

  53. Dai, H.; Yin, G. Z.; Zhao, F. J.; Bian, Z. X.; Xu, Y. J.; Zhang, W. B.; Miao, X. R.; Li, H. Facile synthesis and hierarchical assembly of polystyrene-block-poly (perfluorooctylethyl acrylates). Polymer 2017, 113, 46–52.

    Article  CAS  Google Scholar 

  54. Fancher, C. M.; Hoffmann, C. M.; Frontzek, M. D.; Bunn, J. R.; Payzant, E. A. Probing orientation information using 3-dimensional reciprocal space volume analysis. Rev. Sci. Instr. 2019, 90, 013902.

    Article  CAS  Google Scholar 

  55. Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G. Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules 2011, 44, 3517–3528.

    Article  CAS  Google Scholar 

  56. Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules 2015, 48, 6652–6661.

    Article  CAS  Google Scholar 

  57. Perret, R.; Ruland, W. Single and multiple X-ray small-angle scattering of carbon fibres. J. Appli. Crystallography 1969, 2, 209–218.

    Article  CAS  Google Scholar 

  58. Ruland, W. Small- angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., Part C: Polym. Symp. 1969, 28, 143–151.

    Article  Google Scholar 

  59. Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study. Polymer 2007, 48, 5125–5132.

    Article  CAS  Google Scholar 

  60. Li, X.; Lin, Y.; Ji, Y.; Meng, L.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer 2016, 105, 264–275.

    Article  CAS  Google Scholar 

  61. Shen, L.; Severn, J.; Bastiaansen, C. W. M. Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax. Polymer 2018, 153, 354–361.

    Article  CAS  Google Scholar 

  62. Chiu, H. T.; Wang, J. H. Characterization of UHMWPE sol-gel transition by parallel plate rheometer and pulsed NMR. Polymer 1999, 40, 6859–6864.

    Article  CAS  Google Scholar 

  63. Lv, F.; Chen, X.; Wan, C.; Su, F.; Ji, Y.; Lin, Y.; Li, X.; Li, L. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting. Macromolecules 2017, 50, 6385–6395.

    Article  CAS  Google Scholar 

  64. Lv, R.; He, Y.; Xie, K.; Hu, W. Crystallization rates of moderate and ultrahigh molecular weight polyethylene characterized by flash DSC measurement. Polymer International 2020, 69, 18–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173021 and 52373038), Key Research and Development Programme of Zhejiang Province (No. 2023C01209) and S&T Innovation 2025 Major Special Programme of Ningbo (No. 2023Z079). The authors would like to appreciate the Shanghai Synchrotron Radiation Facility (SSRF) for the beamtime of SAXS, USAXS and WAXD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Bao Wang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3143_MOESM1_ESM.pdf

Structural Evolution of Ultra-High Molecular Weight Polyethylene Low-Entangled Films with Reserved Shish Crystals During Hot Stretching

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, JW., Chen, L., Zhong, YS. et al. Structural Evolution of Ultra-High Molecular Weight Polyethylene Low-Entangled Films with Reserved Shish Crystals During Hot Stretching. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3143-3

Keywords

Navigation