Skip to main content
Log in

Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10−3 S·cm−1. With the CGPE-25, the assembled Li/LiFePO4 half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: https://doi.org/10.57760/sciencedb.j00189.00003) for this paper is available in the Data Repository of China Association for Science and Technology (https://www.scidb.cn/c/cjps).

References

  1. Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X.; Xu, C.; Yosef, N. Simulating multiple faceted variability in single cell RNA sequencing. Nat. Commun. 2019, 10, 1–16.

    Google Scholar 

  3. Zhang, Y.; Sun, J.; Liu, W.; Niu, Z.; Yan, Y.; Qiao, L.; Wu, N. A low-surface-tension strategy to construct ultrathin reduced graphene oxide as lithiophilic matrix for lithium metal anode. Adv. Mater. Interfaces 2022, 9, 2200752.

    Article  CAS  Google Scholar 

  4. Chombo, P. V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649.

    Article  CAS  Google Scholar 

  5. Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018, 10, 246–267.

    Article  Google Scholar 

  6. Yuan, S.; Kong, T.; Zhang, Y.; Dong, P.; Zhang, Y.; Dong, X.; Wang, Y.; Xia, Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem. Int. Ed. 2021, 133, 25828–25842.

    Article  Google Scholar 

  7. Zampardi, G.; La Mantia, F. Solid-electrolyte interphase at positive electrodes in high-energy Li-ion batteries: current understanding and analytical tools. Batteries Supercaps 2020, 3, 672–697.

    Article  CAS  Google Scholar 

  8. Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364.

    Article  CAS  Google Scholar 

  9. Liu, F.; Bin, F.; Xue, J.; Wang, L.; Yang, Y.; Huo, H.; Zhou, J.; Li, L. Polymer electrolyte membrane with high ionic conductivity and enhanced interfacial stability for lithium metal battery. ACS Appl. Mater. Interfaces 2020, 12, 22710–22720.

    Article  CAS  PubMed  Google Scholar 

  10. Pei, X.; Li, Y.; Ou, T.; Liang, X.; Yang, Y.; Jia, E.; Tan, Y.; Guo, S. Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem. Int. Ed. 2022, 61, e202205075.

    Article  CAS  Google Scholar 

  11. Wang, Q.; Xu, X.; Hong, B.; Bai, M.; Li, J.; Zhang, Z.; Lai, Y. Molecular engineering of a gel polymer electrolyte via in-situ polymerization for high performance lithium metal batteries. Chem. Eng. J. 2022, 428, 131331.

    Article  CAS  Google Scholar 

  12. Huo, S.; He, Y.; Hu, Z.; Bao, W.; Chen, W.; Wang, Y.; Zeng, D.; Cheng, H.; Zhang, Y. New insights into designation of single-ion conducting gel polymer electrolyte for high-performance lithium metal batteries. J. Membr. Sci. 2022, 647, 120287.

    Article  CAS  Google Scholar 

  13. Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospun materials for batteries moving beyond lithium-ion technologies. Electrochem. Energy Rev. 2022, 5, 211–241.

    Article  CAS  Google Scholar 

  14. Bicy, K.; Gueye, A. B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithiumion battery separators based on electrospun PVDF: a review. Surf. Interfaces 2022, 31, 101977.

    Article  Google Scholar 

  15. Song, X. Y.; Wang, Z.; Zhao, F. Z.; Sun, Y. Z.; Cheng, B. W.; Xing, J. F. A separator with a novel thermal crosslinking structure based on electrospun PI/A-POSS for lithium-ion battery with high safety and outstanding electrochemical performance. Adv. Mater. Interfaces 2021, 8, 2100458.

    Article  CAS  Google Scholar 

  16. Tang, W.; Liu, Q. Q.; Luo, N.; Chen, F.; Fu, Q. High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery. Compos. Sci. Technol. 2022, 225, 109479.

    Article  CAS  Google Scholar 

  17. Lai, W.; Shan, L.; Bai, J.; Xiao, L.; Liu, L.; Wang, S.; Gong, L.; Jiao, Y.; Xie, W.; Liu, H. Highly permeable and acid-resistant nanofiltration membrane fabricated by in-situ interlaced stacking of COF and polysulfonamide films. Chem. Eng. J. 2022, 450, 137965.

    Article  CAS  Google Scholar 

  18. Bandyopadhyay, S.; Gupta, A.; Srivastava, R.; Nandan, B. Bio-inspired design of electrospun poly(acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries. Chem. Eng. J. 2022, 440, 135926.

    Article  CAS  Google Scholar 

  19. Seidl, L.; Grissa, R.; Zhang, L.; Trabesinger, S.; Battaglia, C. Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Adv. Mater. Interfaces 2022, 9, 2100704.

    Article  CAS  Google Scholar 

  20. Sharon, D.; Deng, C.; Bennington, P.; Webb, M. A.; Patel, S. N.; de Pablo, J. J.; Nealey, P. F. Critical percolation threshold for solvation-site connectivity in polymer electrolyte mixtures. Macromolecules 2022, 55, 7212–7221.

    Article  CAS  Google Scholar 

  21. Ma, X.; Zuo, X.; Wu, J.; Deng, X.; Xiao, X.; Liu, J. S.; Nan, J. M. Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries. J. Mater. Chem. A 2018, 6, 1496–1503.

    Article  CAS  Google Scholar 

  22. Silva, F. C. A.; Ortega, P. F. R.; dos Reis, R. A.; Lavall, R. L.; Costa, L. T. Polymer-ion interactions in PVDF@ionic liquid polymer electrolytes: a combined experimental and computational study. Electrochim. Acta 2022, 427, 140831.

    Article  CAS  Google Scholar 

  23. Chiu, L. L.; Chung, S. H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes. J. Mater. Chem. A 2022, 10, 13719–13726.

    Article  CAS  Google Scholar 

  24. Yi, L. G.; Zou, C. F.; Chen, X. Y.; Liu, J. L.; Cao, S.; Tao, X. Y.; Zang, Z. H.; Liu, L.; Chang, B. B.; Shen, Y. Q.; Wang, X. Y. One-step synthesis of PVDF-HFP/PMMA-ZrO2 gel polymer electrolyte to boost the performance of a lithium metal battery. ACS Appl. Energy Mater. 2022, 5, 7317–7327.

    Article  CAS  Google Scholar 

  25. Shen, Z.; Zhong, J.; Jiang, S.; Xie, W.; Zhan, S.; Lin, K.; Zeng, L.; Hu, H.; Lin, G.; Lin, Y.; Sun, S.; Shi, Z. Polyacrylonitrile porous membrane-based gel polymer electrolyte by in situ free-radical polymerization for stable Li metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 41022–41036.

    Article  CAS  PubMed  Google Scholar 

  26. He, C. F.; Liu, J. Q.; Li, J.; Zhu, F. F.; Zhao, H. J. Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries. J. Membr. Sci. 2018, 560, 30–37.

    Article  CAS  Google Scholar 

  27. Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069.

    Article  CAS  Google Scholar 

  28. Xiao, W.; Wang, Z.; Zhang, Y.; Fang, R.; Yuan, Z.; Miao, C.; Yan, X.; Jiang, Y. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J. Power Sources 2018, 382, 128–134.

    Article  CAS  Google Scholar 

  29. Nakajima, H.; Ohno, H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polym. 2005, 46, 11499–11504.

    Article  CAS  Google Scholar 

  30. Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 17809–17819.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, Q.; He, Y.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

    Article  Google Scholar 

  32. Hsu, C.; Liu, R.; Hsu, C.; Kuo, P. High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv. 2016, 6, 18082–18088.

    Article  CAS  Google Scholar 

  33. Tang, Z. H.; Liu, D.; Lyu, X. L.; Liu, Y. D.; Liu, Y.; Yang, W. L.; Shen, Z. H.; Fan, X. H. Ultra-stretchable ion gels based on physically cross-linked polymer networks. J. Mater. Chem. C 2022, 10, 10926–10934.

    Article  CAS  Google Scholar 

  34. Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356.

    Article  CAS  PubMed  Google Scholar 

  35. Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv. Mater. 2012, 24, 5703–5707.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y.; Tan, B.; Wood, C. D. Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation. J. Mater. Chem. A 2016, 4, 15072–15080.

    Article  CAS  Google Scholar 

  37. Zhou, B. H.; Yang, M. L.; Zuo, C.; Chen, G.; He, D.; Zhou, X. P.; Liu, C. M.; Xie, X. L.; Xue, Z. G. Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett. 2020, 9, 525–532.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao, Q.; Deng, C.; Wang, Q.; Zhang, Q.; Yue, Y.; Ren, S. In situ cross-linked gel polymer electrolyte membranes with excellent thermal stability for lithium ion batteries. ACS Omega 2019, 4, 95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, S.; Zhou, L.; Tufail, M. K.; Yang, L.; Zhai, P.; Chen, R.; Yang, W. In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries. Chem. Eng. J. 2021, 415, 128846.

    Article  CAS  Google Scholar 

  40. Naderi, R.; Gurung, A.; Zhou, Z.; Varnekar, G.; Chen, K.; Zai, J.; Qian, X.; Qiao, Q. Activation of passive nanofillers in composite polymer electrolyte for higher performance lithium-ion batteries. Adv. Sustainable Syst. 2017, 1, 1700043.

    Article  Google Scholar 

  41. Gong, C.; Liu, H.; Zhang, B.; Wang, G.; Cheng, F.; Zheng, G.; Wen, S.; Xue, Z.; Xie, X. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J. Membr. Sci. 2017, 535, 113–121.

    Article  CAS  Google Scholar 

  42. Gao, T. N.; Wang, T.; Wu, W.; Liu, Y.; Huo, Q.; Qiao, Z. A.; Dai, S. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers. Adv. Mater. 2019, 31, 1806254.

    Article  Google Scholar 

  43. Qi, X. T.; Zhang, Z.; Tu, C. B.; Zhu, C.; Wei, J. C.; Yang, Z. Y. Covalent grafting interface engineering to prepare highly efficient and stable polypropylene/mesoporous SiO2 separator for Li-ion batteries. Appl. Surf. Sci. 2021, 541, 148405.

    Article  CAS  Google Scholar 

  44. Carvalho, D. V.; Loeffler, N.; Kim, G. T.; Passerini, S. High temperature stable separator for lithium batteries based on SiO2 and hydroxypropyl guar gum. Membranes 2015, 5, 632–645.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sheng, L.; Xie, X.; Arbizzani, C.; Bargnesi, L.; Bai, Y. Z.; Liu, G. J.; Dong, H. Y.; Wang, T.; He, J. P. A tailored ceramic composite separator with electron-rich groups for high-performance lithium metal anode. J. Membr. Sci. 2022, 657, 120644.

    Article  CAS  Google Scholar 

  46. Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J.; Wang, C.; Wang, W.; Li, W.; Lou, J. Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chem. Eng. J. 2022, 428, 132604.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574087 and 51973128) and Science and Technology Department of Sichuan Province (Nos. 2019YJ0128 and 2019YFG0277). LL thanks the supports from the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long-Yu Li or Shi-Jie Ren.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Xiao, Q., Li, QY. et al. Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3136-2

Keywords

Navigation