Skip to main content
Log in

3D Printed Polyimide/Silica Composite Aerogels for Customizable Thermal Insulation from −50 °C to 1300 °C

  • Research Article
  • Special Issue: Functional Polymer Materials
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Aerogels are widely used as thermal insulation materials because of their high porosity and low bulk density. However, the insulation performance of aerogels is limited to a narrow temperature range. Besides, the preparation of aerogel materials with precisely controlled and complex architectures is still challenging. Here, we report 3D printed polyimide/silica aerogel particle (PI/SAP) composite aerogels for thermal insulation in a wide range of temperature with customized applications. The printability and shape fidelity of 3D printed composite aerogels is improved by adding hydrophilic SAP as a rheology modifier. The resulting PI/SAP composite aerogel exhibits excellent flame-retardant properties and thermal insulation from −50 °C to 1300 °C. Moreover, the PI/SAP composite aerogel with customized shape can be applied for battery insulation at subzero temperatures, promising to be used as customizable and stable insulating materials in a variety of complex and extreme applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The associated data of this article (DOI: https://doi.org/10.57760/sciencedb.j00189.00028) can be accessed from the Science Date Bank database (https://www.scidb.cn/en/s/FBVRfm).

References

  1. An, L.; Armstrong, J. N.; Hu, Y.; Huang, Y. L.; Li, Z.; Zhao, D. H.; Sokolow, J.; Guo, Z. P.; Zhou, C.; Ren, S. Q. High temperature ceramic thermal insulation material. Nano Res. 2022, 15, 6662–6669.

    Article  CAS  Google Scholar 

  2. Wang, Y. T.; Chu, C. Y.; Duan, C. Q.; Dong, J. J.; Chen, H.; Ying, S.; Guo, J.; Xu, G.; Hu, F.; Cheng, Y. Thermal insulation of 3D printed complex and miniaturized SiO2 aerogels at medium-high temperatures. J. Non. Cryst. Solids. 2023, 608, 122251.

    Article  CAS  Google Scholar 

  3. Wu, K. D.; Zhou, Q.; Cao, J. X.; Qian, Z.; Niu, B.; Long, D. H. Ultrahigh-strength carbon aerogels for high temperature thermal insulation. J. Colloid Interface Sci 2021, 609, 667–675.

    Article  PubMed  Google Scholar 

  4. Tian, J.; Yang, Y.; Xue, T. T.; Chao, G. J.; Fan, W.; Liu, T. X. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2021, 105, 194–220.

    Article  Google Scholar 

  5. Jadhav, P. S.; Sarkar, A.; Pasupathy, S.; Ren, S. Q. Biogenic straw aerogel thermal insulation materials. Adv. Eng. Mater. 2023, 25, 2300037.

    Article  CAS  Google Scholar 

  6. Zhang, C. J.; Song, S. C.; Liu, Q.; Li, J. H.; Cao, Q.; Zhang, S. H.; Jian, X. G.; Weng, Z. H. Fabrication of cross-linked polysulfone aerogels for thermal insulation. Mater. Lett. 2023, 351, 135000.

    Article  CAS  Google Scholar 

  7. Zou, F. X.; Budtova, T. Polysaccharide-based aerogels for thermal insulation and superinsulation: an overview. Carbohydr. Polym. 2021, 266, 118130.

    Article  CAS  PubMed  Google Scholar 

  8. Coquard, R.; Baillis, D.; Quenard, D. Numerical and experimental study of the IR opacification of polystyrene foams for thermal insulation enhancement. Energy Build. 2018, 183, 54–63.

    Article  Google Scholar 

  9. Ge, C. B.; Zhai, W. T. Cellular thermoplastic polyurethane thin film: preparation, elasticity, and thermal insulation performance. Ind. Eng. Chem. Res. 2018, 57, 4688–4696.

    Article  CAS  Google Scholar 

  10. Sair, S.; Mandili, B.; Taqi, M.; Bouari, A. E. Development of a new eco-friendly composite material based on gypsum reinforced with a mixture of cork fibre and cardboard waste for building thermal insulation. Compos. Commun. 2019, 16, 20–24.

    Article  Google Scholar 

  11. Li, M. M.; Chen, X.; Li, X. T.; Dong, J.; Teng, C. Q.; Zhao, X.; Zhang, Q. H. Ultralight aerogel textiles based on aramid nanofibers composites with excellent thermal insulation and electromagnetic shielding properties. Compos. Commun. 2022, 35, 101346.

    Article  Google Scholar 

  12. Wu, Z. H.; Feng, X. L.; Qu, Y. X.; Gong, L. X.; Cao, K.; Zhang, G. D.; Shi, Y. Q.; Gao, J. F.; Song, P. G.; Tang, L. C. Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation. Compos. Commun. 2023, 37, 101402.

    Article  Google Scholar 

  13. Baetens, R.; Jelle, B. P.; Gustavsen, A. Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 2010, 43, 761–769.

    Article  Google Scholar 

  14. Fan, W.; Zhang, X.; Zhang, Y.; Zhang, Y. F.; Liu, T. X. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol 2019, 173, 47–52.

    Article  CAS  Google Scholar 

  15. Xu, G. F.; Li, M. J.; Wu, T. T.; Teng, C. Q. Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React. Funct. Polym. 2020, 154, 104672.

    Article  CAS  Google Scholar 

  16. Zhao, S. Y.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Sandra Galmarini, S. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392.

    Article  CAS  PubMed  Google Scholar 

  17. Li, C. D.; Zhang, G. H.; Lin, L. L.; Wu, T. T.; Brunner, S.; Galmarini, S.; Bi, J. T.; J. Malfait, W.; Zhao, S. Y.; Ostrikov, K. Silica aerogels: from materials research to industrial applications. Int. Mater. Rev. 2023, 68, 862–900.

    Article  CAS  Google Scholar 

  18. Liu, Z. H.; Ding, Y. D.; Wang, F.; Deng, Z. P. Thermal insulation material based on SiO2 aerogel. Constr. Build Mater. 2016, 122, 547–554.

    Article  Google Scholar 

  19. Guo, B. F.; Wang, Y. J.; Qu, Z. H.; Yang, F.; Qin, Y. Q.; Li, Y.; Zhang, G. D.; Gao, J. F.; Shi, Y. Q.; Song, P. G.; Tang, L. C. Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying. Small 2023, 20, 2309272.

    Article  Google Scholar 

  20. Zhang, Z. H.; Chen, Z. Y.; Tang, Y. H.; Li, Y. T.; Zhang, G. D.; Cao, C. F.; Gong, L. X.; Tang, L. C. Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. J. Mater. Sci. Technol. 2022, 114, 131–142.

    Article  CAS  Google Scholar 

  21. Zhang, X.; Zhao, X. Y.; Xue, T. T.; Yang, F.; Fan, W.; Liu, T. X. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 2019, 385, 123963.

    Article  Google Scholar 

  22. Fraleoni-Morgera, A.; Chhikara, M. Polymer-based nano-composites for thermal insulation. Adv. Eng. Mater. 2019, 21, 1801162.

    Article  Google Scholar 

  23. Zhao, W.; Zhu, J.; Liu, L. W.; Leng, J. S.; Liu, Y. J. A bio-inspired 3D metamaterials with chirality and anti-chirality topology fabricated by 4D printing. Int. J. Smart Nano Mater. 2023, 14, 1–20.

    Article  Google Scholar 

  24. Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

    Article  Google Scholar 

  25. Joo, P.; Yao, Y.; Teo, N.; Jana, S. C. Modular aerogel brick fabrication via 3D-printed molds. Addit. Manuf. 2021, 46, 102069.

    Google Scholar 

  26. Zhang, Q. Q.; Zhang, F.; Medarametla, S. P.; Li, H.; Zhou, C.; Lin, D. 3D printing of graphene aerogels. Small 2016, 12, 1702–1708.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, Q. Q.; Sheng, Z. Z.; Wang, Y. F.; Lyu, J.; Zhang, X. T. General suspended printing strategy toward programmatically spatial Kevlar aerogels. ACS Nano 2022, 16, 4905–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, N.; Luo, F. Y.; Yang, G. W.; Yao, J. R.; Chen, X.; Shao, Z. Z. Production of functional materials derived from regenerated silk fibroin by utilizing 3D printing and biomimetic enzyme-induced mineralization. Chinese J. Polym. Sci. 2023, 42, 299–310.

    Article  Google Scholar 

  29. Ching, T.; Li, Y. Y.; Karyappa, R.; Ohno, A.; Toh, Y. C.; Hashimoto, M. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sens. Actuators B Chem. 2019, 297, 126609.

    Article  CAS  Google Scholar 

  30. Guan, R. H.; Zheng, H. Y.; Liu, Q. X.; Ou, K. T.; Li, D. S.; Fan, J.; Fu, Q.; Sun, Y. Y. DIW 3D printing of hybrid magnetorheological materials for application in soft robotic grippers. Compos. Sci. Technol. 2022, 223, 109409.

    Article  CAS  Google Scholar 

  31. Yang, G. Y.; Sun, Y. Y.; Qin, L. M.; Li, M. R.; Ou, K. T.; Fang, J.; Fu, Q. Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction. Compos. Sci. Technol. 2021, 215, 109013.

    Article  CAS  Google Scholar 

  32. Yang, G. Y.; Guan, R. H.; Zhen, H. Y.; Ou, K. T.; Fang, J.; Li, D. S.; Fu, Q.; Sun, Y. Y. Tunable size of hierarchically porous alumina ceramics based on DIW 3D printing supramolecular gel. ACS Appl. Mater. Interfaces 2022, 14, 10998–11005.

    Article  CAS  PubMed  Google Scholar 

  33. Feng, C. A.; Yu, S. S. 3D printing of thermal insulating polyimide/cellulose nanocrystal composite aerogels with low dimensional shrinkage. Polymers 2021, 13, 3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, Z. C.; Xue, T. T.; Wali, Q.; Miao, Y. E.; Fan, W.; Liu, T. X. Direct ink writing of polyimide/bacterial cellulose composite aerogel for thermal insulation. Compos. Commun. 2023, 39, 101528.

    Article  Google Scholar 

  35. Wu, T. T.; Ganobjak, M.; Siqueira, G.; Zeng, Z. H.; Li, M. M.; Filimonova, E.; Saghamanesh, S.; Bonnin, A.; Sivaraman, D.; Yip, J.; Li, L.; Wu, H.; Nyström, G.; Malfalt, W. J.; Zhao, S. 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Adv. Mater. Technol. 2023, 8, 2202155.

    Article  CAS  Google Scholar 

  36. Xue, T. T.; Yang, Y.; Yu, D. Y.; Wali, Q.; Wang, Z. Y.; Cao, X. S.; Fan, W.; Liu, T. X. 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett 2023, 15, 45.

    Article  CAS  Google Scholar 

  37. Yang, Y.; Fan, W.; Yuan, S. J.; Tian, J.; Chao, G. J.; Liu, T. X. A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A 2021, 9, 23968–23976.

    Article  CAS  Google Scholar 

  38. Zhang, T. T.; Zhou, M. X.; Guo, Z. Y.; Zhao, Y. B.; Han, D.; Xiu, H.; Bai, H. W.; Zhang, Q.; Fu, Q. Improving impact toughness of polylactide/ethylene-co-vinyl-acetate blends via adding fumed silica nanoparticles: effects of specific surface area-dependent interfacial selective distribution of silica. Chinese J. Polym. Sci. 2021, 39, 1040–1049.

    Article  CAS  Google Scholar 

  39. Chen, Q. F.; Wang, H.; Sun, L. Y. Preparation and characterization of silica aerogel microspheres. Materials 2017, 10, 435.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peng, T. P.; Zhu, J. D.; Huang, T.; Jiang, C. W.; Zhao, F. X.; Ge, S. Z.; Xie, L. Facile preparation for gelatin/hydroxyethyl cellulose-SiO2 composite aerogel with good mechanical strength, heat insulation, and water resistance. J. Appl. Polym. Sci. 2021, 138, e50539.

    Article  Google Scholar 

  41. Babiarczuk, B.; Lewandowski, D.; Szczurek, A.; Kierzek, K.; Meffert, M.; Gerthsen, D.; Kaleta, J.; Krzak, J. Novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol-gel process and phase separation. J. Supercrit. Fluids 2020, 166, 104997.

    Article  CAS  Google Scholar 

  42. Wang, F.; Yang, Z. J.; Hu, X. Z.; Pan, Y.; Lu, Y.; Jiang, M. Coaxial 3D printed anisotropic thermal conductive composite aerogel with aligned hierarchical porous carbon nanotubes and cellulose nanofibers. Smart Mater. Struct. 2022, 31, 045002.

    Article  Google Scholar 

  43. Liu, C. H.; Li, M. C.; Liu, X. Y.; Zhou, G. Q.; Liu, C. Z.; Mei, C. T. 3D printing of customized lignocellulose nanofibril aerogels for efficient thermal insulation. Addit. Manuf. 2023, 78, 103841.

    CAS  Google Scholar 

  44. Maleki, H.; Montes, S.; Hayati-Roodbari, N.; Putz, F.; Huesing, N. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure—an approach towards 3D printing of aerogels. ACS Appl. Mater. Interfaces 2018, 10, 22718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, Y. J.; Cui, Y.; Shao, Z. Y.; Gao, W. W.; Fan, W.; Liu, T. X.; Bai, H. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem. Eng. J. 2020, 390, 124623.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFB3805700), National Natural Science Foundation of China (Nos. 52073053 and 52233006), Young Elite Scientists Sponsorship Program by CAST (No. 2021QNRC001), Shanghai Rising-Star Program (No. 21QA1400300), and Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-03-E00108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Xue, T., Ma, Z. et al. 3D Printed Polyimide/Silica Composite Aerogels for Customizable Thermal Insulation from −50 °C to 1300 °C. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3130-8

Keywords

Navigation