Skip to main content
Log in

A Self-Healing Elastomer with Extremely High Toughness Achieved by Acylsemicarbazide Hydrogen Bonding and Cu2+-Neocuproine Coordination Interactions

  • Research Article
  • Special Issue: Dynamic Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Elastomers with high mechanical toughness can guarantee their durability during service life. Self-healing ability, as well as recyclability, can also extend the life of materials and save the consuming cost of the materials. Many efforts have been dedicated to promoting the mechanical toughness as well as the self-healing capability of elastomers at the same time, while it remains a challenge to balance the trade-off between the above properties in one system. Herein we proposed a molecular design driven by dual interactions of acylsemicarbazide hydrogen bonding and Cu2+-neocuproine coordination simultaneously. By introducing the reversible multiple hydrogen bonds and strong coordination bonds, we successfully fabricated an extremely tough and self-healing elastomer. The elastomer can achieve an impressive top-notch toughness of 491 MJ/m3. Furthermore, it boasted rapid elastic restorability within 10 min and outstanding crack tolerance with high fracture energy (152.6 kJ/m2). Benefiting from the combination of dynamic interactions, the material was able to self-repair under 80 °C conveniently and could be reprocessed to restore the exceptional mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: https://doi.org/10.1007/s10118-024-3129-1) for this paper is available in the (A Self-Healing Elastomer with Extremely High Toughness Achieved by Acylsemicarbazide Hydrogen Bonding and Cu2+-Neocuproine Coordination Interactions) database (https://www.scidb.cn/c/cjps).

References

  1. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–80.

    Article  CAS  PubMed  Google Scholar 

  2. Winey, K. I. Designing tougher elastomers with ionomers. Science 2017, 358, 449–450.

    Article  CAS  PubMed  Google Scholar 

  3. Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y.; Liang, H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V.; Sheiko, S. S. Chameleon- like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  4. Aboelkheir, M. G.; Visconte, L. Y.; Oliveira, G. E.; Toledo Filho, R. D.; Souza, F. G., Jr. The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Sci. Total Environ. 2019, 649, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  5. Duan, L.; Lai, J. C.; Li, C. H.; Zuo, J. L. A dielectric elastomer actuator that can self-heal integrally. ACS Appl. Mater. Interfaces 2020, 12, 44137–44146.

    Article  CAS  PubMed  Google Scholar 

  6. Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu, Z.; Chen, L.; Lu, L.; Du, R.; Ma, W.; Cai, Y.; An, X.; Wu, H.; Luo, Q.; Xu, Q.; Zhang, Q.; Jia, X. A highly-adhesive and self-healing elastomer for bio-interfacial electrode. Adv. Funct. Mater. 2020, 31, 2006432.

    Article  Google Scholar 

  8. Lerner, A. A.; Cunefare, K. A. Performance of mre-based vibration absorbers. J. Intelligent Mater. Systems Struct. 2007, 19, 551–563.

    Article  Google Scholar 

  9. Global Market Value of Elastomers 2019 & 2024, https://www.statista.com/statistics/1109228/global-market-size-elastomers/ (accessed: Jan 2021).

  10. Aoudia, K.; Azem, S.; Ait Hocine, N.; Gratton, M.; Pettarin, V.; Seghar, S. Recycling of waste tire rubber: microwave devulcanization and incorporation in a thermoset resin. Waste Manag. 2017, 60, 471–481.

    Article  CAS  PubMed  Google Scholar 

  11. Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products. Macromolecules 2015, 48, 7096–7105.

    Article  CAS  Google Scholar 

  12. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–702.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.

    Article  CAS  PubMed  Google Scholar 

  14. Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2018, 57, 13838–13842.

    Article  CAS  Google Scholar 

  15. Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P.; Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 2014, 344, 186–189.

    Article  CAS  PubMed  Google Scholar 

  16. Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76.

    Article  CAS  PubMed  Google Scholar 

  17. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  PubMed  Google Scholar 

  18. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. Self-healing materials with microvascular networks. Nat. Mater. 2007, 6, 581–585.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y. L.; Chuo, T. W. Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 2013, 4, 2194–2205.

    Article  CAS  Google Scholar 

  20. Podgorski, M.; Mavila, S.; Huang, S.; Spurgin, N.; Sinha, J.; Bowman, C. N. Thiol- anhydride dynamic reversible networks. Angew. Chem. Int. Ed. 2020, 59, 9345–9349.

    Article  CAS  Google Scholar 

  21. Lu, Y. X.; Guan, Z. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds. J. Am. Chem. Soc. 2012, 134, 14226–14231.

    Article  CAS  PubMed  Google Scholar 

  22. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 2011, 50, 1660–1663.

    Article  CAS  Google Scholar 

  23. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Mechanically robust, self-healable, and highly stretchable “living” crosslieded polyurethane based on a reversible C–C bond. Adv. Funct. Mater. 2018, 28, 1706050.

    Article  Google Scholar 

  24. Ogden, W. A.; Guan, Z. Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc. 2018, 140, 6217–6220.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A Fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 2021, 60, 7947–7955.

    Article  CAS  Google Scholar 

  26. Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334–337.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Z.; Cheng, L.; Zhao, J.; Wang, L.; Liu, K.; Yu, W.; Yan, X. Synergistic covalent and supramolecular polymers for mechanically robust but dynamic materials. Angew. Chem. Int. Ed. 2020, 59, 12139–12146.

    Article  CAS  Google Scholar 

  28. Zhang, Y.; Li, M.; Qin, B.; Chen, L.; Liu, Y.; Zhang, X.; Wang, C. Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion-dipole interactions. Chem. Mater. 2020, 32, 6310–6317.

    Article  CAS  Google Scholar 

  29. Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J. A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132, 12051–12058.

    Article  CAS  PubMed  Google Scholar 

  30. Neumann, L. N.; Oveisi, E.; Petzold, A.; Style, R. W.; Thurn-Albrecht, T.; Weder, C.; Schrettl, S. Dynamics and healing behavior of metallosupramolecular polymers. Sci. Adv. 2021, 7, eabe4154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, D.; Wang, Z.; Ren, S.; Xu, J.; Wang, C.; Hu, P.; Fu, J. Molecular engineering of a colorless, extremely tough, superiorly self-recoverable, and healable poly(urethane-urea) elastomer for impact-resistant applications. Mater. Horiz. 2021, 8, 2238–2250.

    Article  CAS  PubMed  Google Scholar 

  32. Xing, C.; Wu, H.; Du, R.; Zhang, Q.; Jia, X. Extremely tough and healable elastomer realized via reducing the crystallinity of its rigid domain. Polym. Chem. 2021, 12, 4778–4784.

    Article  CAS  Google Scholar 

  33. Zhang, Q.; Zhu, X.; Li, C. H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking. Macromolecules 2019, 52, 660–668.

    Article  CAS  Google Scholar 

  34. Du, R.; Xu, Z.; Zhu, C.; Jiang, Y.; Yan, H.; Wu, H. C.; Vardoulis, O.; Cai, Y.; Zhu, X.; Bao, Z.; Zhang, Q.; Jia, X. A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater. 2019, 30, 1907139.

    Article  Google Scholar 

  35. Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T.; Li, J.; Qi, D.; Huang, P.; Huang, J.; Zhang, Y.; Wang, Y.; Li, G.; Tok, J. B. H.; Chen, X.; Bao, Z. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 2018, 140, 5280–5289.

    Article  CAS  PubMed  Google Scholar 

  36. Skene, W. G.; Lehn, J. M. Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 8270–8275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.

    Article  CAS  PubMed  Google Scholar 

  38. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai, J. C.; Li, L.; Wang, D. P.; Zhang, M. H.; Mo, S. R.; Wang, X.; Zeng, K. Y.; Li, C. H.; Jiang, Q.; You, X. Z.; Zuo, J. L. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, e2005759.

    Article  PubMed  Google Scholar 

  41. Speight, J. G. Lange’s Handbook of Chemistry: Sixteenth Edition. Wyoming: CD&W Inc, U. S. A. 2005.

    Google Scholar 

  42. Tepper, R.; Bode, S.; Geitner, R.; Jager, M.; Gorls, H.; Vitz, J.; Dietzek, B.; Schmitt, M.; Popp, J.; Hager, M. D.; Schubert, U. S. Polymeric halogen-bond-based donor systems showing self-healing behavior in thin films. Angew. Chem. Int. Ed. 2017, 56, 4047–4051.

    Article  CAS  Google Scholar 

  43. Wang, D. P.; Lai, J. C.; Lai, H. Y.; Mo, S. R.; Zeng, K. Y.; Li, C. H.; Zuo, J. L. Distinct mechanical and self-healing properties in two polydimethylsiloxane coordination polymers with fine-tuned bond strength. Inorg. Chem. 2018, 57, 3232–3242.

    Article  CAS  PubMed  Google Scholar 

  44. Hussain, Z.; Salim, M. A.; Khan, M. A.; Khawaja, E. E. X-ray photoelectron and auger spectroscopy study of copper-sodium-germanate glasses. J. Non-Crystalline Solids 1989, 110, 44–52.

    Article  CAS  Google Scholar 

  45. Li, Z.; Zhu, Y. L.; Niu, W.; Yang, X.; Jiang, Z.; Lu, Z. Y.; Liu, X.; Sun, J. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, e2101498.

    Article  PubMed  Google Scholar 

  46. Wang, D.; Xu, J.; Chen, J.; Hu, P.; Wang, Y.; Jiang, W.; Fu, J. Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications. Adv. Funct. Mater. 2019, 30, 1907109.

    Article  Google Scholar 

  47. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, e1802556.

    Article  PubMed  Google Scholar 

  48. Wang, Y.; Li, T.; Wang, X.; Ma, P.; Bai, H.; Dong, W.; Xie, Y.; Chen, M. Superior performance of polyurethane based on natural melanin nanoparticles. Biomacromolecules 2016, 17, 3782–3789.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, X.; Zhong, Q.; Cui, C.; Ma, L.; Liu, S.; Zhang, Q.; Wu, Y.; An, L.; Cheng, Y.; Ye, S.; Chen, X.; Dong, Z.; Chen, Q.; Zhang, Y. Extremely tough, puncture-resistant, transparent, and photoluminescent polyurethane elastomers for crack self-diagnose and healing tracking. ACS Appl. Mater. Interfaces 2020, 12, 30847–30855.

    Article  CAS  PubMed  Google Scholar 

  50. Fu, D.; Pu, W.; Wang, Z.; Lu, X.; Sun, S.; Yu, C.; Xia, H. A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability. J. Mater. Chem. A 2018, 6, 18154–18164.

    Article  CAS  Google Scholar 

  51. Eom, Y.; Kim, S. M.; Lee, M.; Jeon, H.; Park, J.; Lee, E. S.; Hwang, S. Y.; Park, J.; Oh, D. X. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun. 2021, 12, 621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F. L.; Bao, X.; You, Z. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater 2019, 31, e1901402.

    Article  PubMed  Google Scholar 

  53. Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B.; Jia, X.; Bao, Z. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, e1801435.

  54. Li, Y.; Li, W.; Sun, A.; Jing, M.; Liu, X.; Wei, L.; Wu, K.; Fu, Q. A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability. Mater. Horiz. 2021, 8, 267–275.

    Article  CAS  PubMed  Google Scholar 

  55. Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers. Adv. Mater. 2023, 35, 2300286.

    Article  CAS  Google Scholar 

  56. Xu, J.; Li, Y.; Liu, T.; Wang, D.; Sun, F.; Hu, P.; Wang, L.; Chen, J.; Wang, X.; Yao, B.; Fu, J. Room- temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 2023, 35, 2300937.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22075130) and the Fundamental Research Funds for the Central Universities. The authors also acknowledged Shanghai Synchrotron Radiation Facility (SSRF) for the beam time on Beamline BL16B1, used for SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Dong Jia or Qiu-Hong Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3129_MOESM1_ESM.pdf

A Self-Healing Elastomer with Extremely Toughness Achieved by Acylsemicarbazide Hydrogen Bonding and Cu2+-Neocuproine Coordination Interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, XM., Wang, YP., Zhu, TS. et al. A Self-Healing Elastomer with Extremely High Toughness Achieved by Acylsemicarbazide Hydrogen Bonding and Cu2+-Neocuproine Coordination Interactions. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3129-1

Keywords

Navigation