Skip to main content
Log in

The Crystallization Behavior of L-Poly(lactic acid)/Polypropylene Blends: The Acceleration for Both L-Poly(lactic acid) and Polypropylene

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

For a polymer/polymer dismissible blend with two crystallizable components, the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important, but did not investigate in detail. In this study, the L-poly(lactic acid)/polypropylene (PLLA/PP) blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated. Results showed that the crystalline structures of PLLA and PP were not altered by the composition. For the crystallization of PLLA, both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals. For the crystallization of PP, its crystallization rate was depressed under the existence of amorphous PLLA molecular chains. When the PP crystallized from the existence of PLLA crystals, although the diffusion rate of PP was reduced by PLLA crystals, the nucleation positions were obviously enhanced, which accelerated the formation of PP crystals. This investigation would supply more basic data for the application of PLLA/PP blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: https://doi.org/10.1007/s10118-024-3104-x) for this paper is available in the (Data Repository of China Association for Science and Technology) database (https://www.scidb.cn/c/cjps).

References

  1. Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175.

    Article  CAS  PubMed  Google Scholar 

  2. Pascual-Gonzalez, C.; Thompson, C.; de la Vega, J.; Biurrun Churruca, N.; Fernandez-Blazquez, J. P.; Lizarralde, I.; Herraez-Molinero, D.; Gonzalez, C.; Llorca, J. Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyp. J. 2022, 28, 884–894.

    Article  Google Scholar 

  3. Zhang, S.; Yan, D.; Zhao, L.; Lin, J. Composite fibrous membrane comprising PLA and PCL fibers for biomedical application. Compos. Commun. 2022, 34, 101268.

    Article  Google Scholar 

  4. Miros-Kudra, P.; Gzyra-Jagieta, K.; Kudra, M. Physicochemiaal assessment of the biodegradability of agricultural nonwovens made of PLA. Fibres Text. East. Eur. 2021, 145, 26–34.

    Article  Google Scholar 

  5. Parida, M.; Shajkumar, A.; Mohanty, S.; Biswal, M.; Nayak, S. K. Poly(lactic acid) (PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment. Polym. Bull. 2023, 80, 3649–3674.

    Article  CAS  Google Scholar 

  6. Zhou, X.; Yang, R.; Wang, B.; Chen, K. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr. Polym. 2019, 222, 114912.

    Article  CAS  PubMed  Google Scholar 

  7. Mangaraj, S.; Thakur, R. R.; Yadav, A. Development and characterization of PLA and Cassava starch-based novel biodegradable film used for food packaging application. J. Food Process. Preserv. 2022, 46, e16314.

    Article  CAS  Google Scholar 

  8. Ordoñez, R.; Atarés, L.; Chiralt, A. Antibacterial properties of cinnamic and ferulic acids incorporated to starch and PLA monolayer and multilayer films. Food Control. 2022, 136, 108878.

    Article  Google Scholar 

  9. Zaaba, N. F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075.

    Article  CAS  Google Scholar 

  10. Xiaodong, W.; Xuan, G.; Rakshit, S. Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol. Lett. 1997, 19, 841–843.

    Article  CAS  Google Scholar 

  11. Oh, H.; Wee, Y. J.; Yun, J. S.; Han, S. H.; Jung, S.; Ryu, H. W. Lactic acid production from agricultural resources as cheap raw materials. Bioresour. Technol. 2005, 96, 1492–1498.

    Article  CAS  PubMed  Google Scholar 

  12. Groot, W. J.; Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Ass. 2010, 15, 970–984.

    Article  CAS  Google Scholar 

  13. Lee, W.; Lee, J.; Chung, J. W.; Kwak, S.Y. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: the effect of mesophase transition on mechanical properties. Int. J. Biol. Macromol. 2021, 193, 1103–1113.

    Article  CAS  PubMed  Google Scholar 

  14. Takayama, T.; Todo, M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J. Mater. Sci. 2006, 41, 4989–4992.

    Article  ADS  CAS  Google Scholar 

  15. Takayama, T.; Todo, M.; Tsuji, H.; Arakawa, K. Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends. J. Mater. Sci. 2006, 41, 6501–6504.

    Article  ADS  CAS  Google Scholar 

  16. Arrieta, M. P.; Samper, M. D.; Aldas, M.; López, J. On the use of PLA-PHB blends for sustainable food packaging applications. Materials 2017, 10, 1008.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Piekarska, K.; Piorkowska, E.; Bojda, J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym. Test. 2017, 62, 203–209.

    Article  CAS  Google Scholar 

  18. Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D printing of PLA-TPU with different component ratios: fracture toughness, mechanical properties, and morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981.

    Article  CAS  Google Scholar 

  19. Nofar, M.; Zhu, W.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind. Eng. Chem. Res. 2011, 50, 13789–13798.

    Article  CAS  Google Scholar 

  20. Korber, S.; Moser, K.; Diemert, J. Development of high temperature resistant stereocomplex PLA for injection moulding. Polymers 2022, 14, 384.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ebadi-Dehaghani, H.; Barikani, M.; Khonakdar, H. A.; Jafari, S. H. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J. Therm. Anal. Calorim. 2015, 121, 1321–1332.

    Article  CAS  Google Scholar 

  22. Klonos, P. A.; Lazaridou, M.; Samiotaki, C.; Kyritsis, A.; Bikiaris, D. N. Dielectric and calorimetric study in renewable polymer blends based on poly(ethylene adipate) and poly(lactic acid) with microphase separation. Polymer 2022, 259, 125329.

    Article  CAS  Google Scholar 

  23. Li, C.; Dou, Q.; Bai, Z.; Lu, Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J. Therm. Anal. Calorim. 2015, 122, 407–417.

    Article  CAS  Google Scholar 

  24. Karimi, S.; Ghasemi, I.; Abbassi-Sourki, F. A study on the crystallization kinetics of PLLA in the presence of graphene oxide and PEG-grafted-graphene oxide: effects on the nucleation and chain mobility. Compos. BEng. 2019, 158, 302–310.

    Article  CAS  Google Scholar 

  25. Prasitnok, K.; In-noi, O. Functionalized graphenes as nanofillers for polylactide: molecular dynamics simulation study. Polym. Compos. 2020, 41, 294–305.

    Article  CAS  Google Scholar 

  26. Črešnar, K. P.; Klonos, P. A.; Zamboulis, A.; Terzopoulou, Z.; Xanthopoulou, E.; Papadopoulos, L.; Kyritsis, A.; Kuzmič, K.; Zemljič, L. F.; Bikiaris, D. N. Structure-Properties relationships in renewable composites based on polylactide filled with Tannin and Kraft Lignin-crystallization and molecular mobility. Thermochim. Acta 2021, 703, 178998.

    Article  Google Scholar 

  27. Kudryavtseva, V. L.; Zhao, L.; Tverdokhlebov, S. I.; Sukhorukov, G. B. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules. Colloids Surf. B 2017, 157, 481–489.

    Article  CAS  Google Scholar 

  28. Ye, B.; Jia, C.; Li, Z.; Li, L.; Zhao, Q.; Wang, J.; Wu, H. Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation. J. Appl. Polym. Sci. 2020, 137, 49103.

    Article  CAS  Google Scholar 

  29. Messin, T.; Marais, S.; Follain, N.; Guinault, A.; Gaucher, V.; Delpouve, N.; Sollogoub, C. Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances. J. Membr. Sci. 2020, 598, 117777.

    Article  CAS  Google Scholar 

  30. Fang, P.; Lu, X.; Zhou, Q.; Yan, D.; Xin, J.; Xu, J.; Shi, C.; Zhou, Y.; Xia, S. Controlled alcoholysis of PET to obtain oligomers for the preparation of PET-PLA copolymer. Chem. Eng. J. 2023, 451, 138988.

    Article  CAS  Google Scholar 

  31. Wang, G.; Zhao, J.; Wang, G.; Zhao, H.; Lin, J.; Zhao, G.; Park, C. B. Strong and super thermally insulating in-situ anoofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chem. Eng. J. 2020, 390, 124520.

    Article  Google Scholar 

  32. Yusoff, N. H.; Pal, K.; Narayanan, T.; de Souza, F. G. Recent trends on bioplastics synthesis and characterizations: polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J. Mol. Struct. 2021, 1232, 129954.

    Article  CAS  Google Scholar 

  33. Moji, R. G.; Motloung, S. V.; Motaung, T. E.; Koao, L. F. Characterization of the incorporated SiO2 co-doped with Sr2+ and Tb3+ phosphors into PLA polymer matrix. J. Mol. Struct. 2022, 1263, 133176.

    Article  CAS  Google Scholar 

  34. Choi, E. Y.; Kim, C. K.; Park, C. B. Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/MA-EPDM composite. Compos. B Eng. 2022, 242, 110043.

    Article  CAS  Google Scholar 

  35. Zhang, A.; Wang, Z.; Guan, Y.; Zhao, J.; Zhao, G.; Wang, G. Strong PP/PTFE microfibril reinforced composites achieved by enhanced crystallization under CO2 environment. Polym. Test. 2022, 112, 107630.

    Article  CAS  Google Scholar 

  36. Bai, Z.; Dou, Q. Rheology, morphology, crystallization behaviors, mechanical and thermal properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends. J. Polym. Environ. 2017, 26, 959–969.

    Article  Google Scholar 

  37. Sui, G.; Jing, M.; Zhao, J.; Wang, K.; Zhang, Q.; Fu, Q. A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer 2018, 154, 119–127.

    Article  CAS  Google Scholar 

  38. Jonoobi, M.; Harun, J.; Mathew, A. P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747.

    Article  CAS  Google Scholar 

  39. Nagarajan, V.; Mohanty, A. K.; Misra, M. Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative. J. Appl. Polym. Sci. 2016, 133, 43673.

    Article  Google Scholar 

  40. Fatriansyah, J. F.; Surip, S. N.; Jaafar, W. N. R. W.; Phasa, A.; Uyup, M. K. A.; Suhariadi, I. Isothermal crystallization kinetics and mechanical properties of PLA/Kenaf biocomposite: comparison between alkaline treated kenaf core and bast reinforcement. Mater. Lett. 2022, 319, 132294.

    Article  CAS  Google Scholar 

  41. Feng, C.; Chen, Y.; Shao, J.; Hou, H. The crystallization behavior of poly(L-lactic acid)/poly(D-lactic acid) electrospun fibers: effect of distance of isomeric polymers. Ind. Eng. Chem. Res. 2020, 59, 8480–8491.

    Article  CAS  Google Scholar 

  42. Clarkson, C. M.; Azrak, S. M. E. A.; Schueneman, G. T.; Snyder, J. F.; Youngblood, J. P. Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer. Polymer 2020, 187, 122101.

    Article  CAS  Google Scholar 

  43. Sharafi, Z. S.; Fathi, B.; Ajji, A.; Robert, M.; Elkoun, S. Phase transition and crystallization behavior of grafted starch nanocrystals in PLA nanocomposites. Express Polym. Lett. 2022, 16, 1253–1266.

    Article  Google Scholar 

  44. Kang, H.; Lu, X.; Xu, Y. Properties of immiscible and ethylene-butyl acrylate-glycidyl methacrylate terpolymer compatibilized poly(lactic acid) and polypropylene blends. Polym. Test. 2015, 43, 173–181.

    Article  CAS  Google Scholar 

  45. Zhang, Y. C.; Wu, H. Y.; Qiu, Y. P. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresour. Technol. 2010, 101, 7944–50.

    Article  CAS  Google Scholar 

  46. Kaczmarek, H.; Nowicki, M.; Vuković-Kwiatkowska, I.; Nowakowska, S. Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies. J. Polym. Res. 2013, 20, 91.

    Article  Google Scholar 

  47. De Rosa, C.; Auriemma, F.; Corradini, P. Crystal structure of form I of syndiotactic polypropylene. Macromolecules 1996, 29, 7452–7459.

    Article  ADS  CAS  Google Scholar 

  48. Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.

    Article  CAS  Google Scholar 

  49. Feng, C.S.; Chen, Y.; Shao, J.; Li, G.; Hou, H.Q. The crystallization and melting behaviors of PDLA-b-PBS-b-PDLA triblock copolymers. Chinese J. Polym. Sci. 2020, 38, 298–310.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51403089 and 21574060), the Major Special Projects of Jiangxi Provincial Department of Science and Technology (No. 20114ABF05100), the Project of Jiangxi Provincial Department of Education (No. GJJ170229), the China Postdoctoral Science Foundation (No. 2019M652282), the Postdoctoral Science Foundation of Jiangxi Province (No. 2018KY37) and the Technology Plan Landing Project of Jiangxi Provincial Department of Education (No. GCJ2011-243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Shao, Hao-Qing Hou or Sheng Xiang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3104_MOESM1_ESM.pdf

The Crystallization Behavior of L-Poly(lactic acid)/Polypropylene Blends: The Acceleration for Both L-Poly(lactic acid) and Polypropylene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SC., Zhou, WJ., Wu, WJ. et al. The Crystallization Behavior of L-Poly(lactic acid)/Polypropylene Blends: The Acceleration for Both L-Poly(lactic acid) and Polypropylene. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3104-x

Keywords

Navigation