Skip to main content
Log in

Effect of Phase Separation Size on the Properties of Self-healing Elastomer

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Regulation of phase structure has been recognized as one of the most effective ways to fabricate self-healing polymers with high mechanical strength. The mechanical properties of the resultant polymers are certainly affected by the size of separated phase domain. However, the study on this aspect is absence, because it can hardly exclude the influence of variation in monomer proportion required for tuning the separated phase size. Here, we report the first study on tuning the phase size through reversible addition-fragmentation chain transfer (RAFT) polymerization without changing the proportion of monomers. As expected, the size of separated phase has been successfully mediated from 15 nm to 9 nm by tuning the molecular weight of the chain transfer agent. It is found that the mechanical strength and the self-healing efficiency of the resultant polymers increase simultaneously with the decrease of phase size. The study on the formation kinetics of hydrogen bonds reveals that the decrease of phase size can facilitate the re-bonding rate of hydrogen bonds, even if the migration of polymer chains is restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The associated data of this article (DOI: https://doi.org/10.1007/s10118-024-3097-5) can be accessed from the Chinese Journal of Polymer Science database (https://www.cjps.org).

References

  1. Sumerlin, B. S. Next-generation self-healing materials. Science 2018, 362, 150–151.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhang, M. Self-healing polymeric materials: on a winding road to success. Chinese J. Polym. Sci. 2022, 40, 1315–1316.

    Article  CAS  Google Scholar 

  3. Xu, J.; Zhu, L.; Nie, Y.; Li, Y.; Wei, S.; Chen, X.; Zhao, W.; Yan, S. Advances and challenges of self-healing elastomers: a mini review. Materials 2022, 15, 5993.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng, Y.; Zhu, H.; Tan, Y.; Liu, F.; Wu, Y. Rapid self-healing and strong adhesive elastomer via supramolecular aggregates from core-shell micelles of silicon hydroxyl-functionalized cis-polybutadiene. Chinese J. Polym. Sci. 2023, 41, 84–94.

    Article  Google Scholar 

  5. Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable and water-resistant elastomers. Adv. Mater. 2023, 35, 2300286.

    Article  CAS  Google Scholar 

  6. Li, C.; Liu, J.; Qiu, X.; Yang, X.; Huang, X.; Zhang, X. Photoswitchable and reversible fluorescent eutectogels for conformal information encryption. Angew. Chem. Int. Ed. 2023, 62, 13971.

    Google Scholar 

  7. Wang, Y.; Shu, R.; Zhang, X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding. Angew. Chem. Int. Ed. 2023, 62, 03446.

    Google Scholar 

  8. Yang, T.; Lu, X.; Wang, X.; Li, Y.; Wei, X.; Wang, W.; Sun, J. Healable, recyclable, and scratch-resistant polyurethane elastomers cross-linked with multiple hydrogen bonds. ACS Appl. Polym. Mater. 2023, 5, 2830–2839.

    Article  CAS  Google Scholar 

  9. Zhao, C.; Guo, M.; Mao, J.; Li, Y.; Wu, Y.; Guo, H.; Xiang, D.; Li, H. Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chinese J. Polym. Sci. 2023, 41, 334–344.

    Article  CAS  Google Scholar 

  10. Zhang, L.; You, Z. Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications. Chinese J. Polym. Sci. 2021, 39, 1281–1291.

    Article  CAS  Google Scholar 

  11. Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial non-covalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y.; Guan, Z. Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials. Chem. Commun. 2014, 50, 10868–10870.

    Article  ADS  CAS  Google Scholar 

  13. Li, M.; Rong, M.; Zhang, M. Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers—an example of next generation self-healing strategy. Chinese J. Polym. Sci. 2021, 39, 545–553.

    Article  CAS  Google Scholar 

  14. Eom, Y.; Kim, S.-M.; Lee, M.; Jeon, H.; Park, J.; Lee, E. S.; Hwang, S. Y.; Park, J.; Oh, D. X. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun. 2021, 12, 621.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y.; Huang, X.; Zhang, X. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun. 2021, 12, 1291.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, F.; Liu, L.; Liu, T.; Wang, X.; Qi, Q.; Hang, Z.; Chen, K.; Xu, J.; Fu, J. Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat. Commun. 2023, 14, 130.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tie, J.; Mao, Z.; Zhang, L.; Zhong, Y.; Xu, H. Strong and ultratough ionogel enabled by ingenious combined ionic liquids induced microphase separation. Adv. Funct. Mater. 2023, 2307367.

  18. Li, H.; Li, X.; Liu, N.; Liu, D.; Wang, Z.; Chen, F. A tough and strain-stiffening ionogel enabled by moderate microphase separation for epidermal multi-sensor. Polymer 2023, 282, 126166.

    Article  CAS  Google Scholar 

  19. Wu, J.; Zhang, Z.; Wu, Z.; Liu, D.; Yang, X.; Wang, Y.; Jia, X.; Xu, X.; Jiang, P.; Wang, X. A tough and strain-stiffening ionogel enabled by moderate microphase separation for epidermal multi-sensor. Adv. Funct. Mater. 2022, 33, 2210395.

    Article  Google Scholar 

  20. Liu, Y.; Chen, L.; Yang, Y.; Chen, H.; Zhang, X.; Liu, S. High Mechanical Strength and Multifunctional Microphase-Separated Supramolecular Hydrogels Fabricated by Liquid-Crystalline Block copolymer. Macromol. Rapid Commun. 2022, 44, 2200829.

    Article  Google Scholar 

  21. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.

    Article  Google Scholar 

  22. Wang, B.; Zhai, W.; Fan, J. B.; Xu, J.; Zhao, W.; Feng, X. An interfacially polymerized self-healing organo/hydro copolymer with shape memory. Nanoscale 2019, 11, 6846–6851.

    Article  CAS  PubMed  Google Scholar 

  23. An, N.; Wang, X.; Li, Y.; Zhang, L.; Lu, Z.; Sun, J. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv. Mater. 2019, 31, 1904882.

    Article  CAS  Google Scholar 

  24. Xun, X.; Zhao, X.; Li, Q.; Zhao, B.; Ouyang, T.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Tough and degradable self-healing elastomer from synergistic soft-hard segments design for biomechano-robust artificial skin. ACS Nano 2021, 15, 20656–20665.

    Article  CAS  PubMed  Google Scholar 

  25. Xie, Z.; Hu, B.; Li, R.; Zhang, Q. Hydrogen bonding in self-healing elastomers. ACS Omega 2021, 6, 9319–9333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, W.; Liu, Y.; Zhao, C.; Shi, X.; Feng, X.; Xu, J.; Wang, S.; Wu, Y.; Yan, S. A fast self-healable and stretchable conductor based on hierarchical wrinkled structure for flexible electronics. Compos. Sci. Technol. 2021, 211, 108834.

    Article  CAS  Google Scholar 

  27. Zhao, W.; Zhang, Z.; Hu, J.; Feng, X.; Xu, J.; Wu, Y.; Yan, S. Robust and ultra-fast self-healing elastomers with hierarchically anisotropic structures and used for wearable sensors. Chem. Eng. J. 2022, 446, 137305.

    Article  CAS  Google Scholar 

  28. Zhao, W.; Li, Y.; Hu, J.; Feng, X.; Zhang, H.; Xu, J.; Yan, S. Mechanically robust, instant self-healing polymers towards elastic entropy driven artificial muscles. Chem. Eng. J. 2023, 454, 140100.

    Article  CAS  Google Scholar 

  29. Zhao, W.; Liu, Y.; Zhang, Z.; Feng, X.; Xu, H.; Xu, J.; Hu, J.; Wang, S.; Wu, Y.; Yan, S. High-strength, fast self-healing, aging-insensitive elastomers with shape memory effect. ACS Appl. Mater. Interfaces 2020, 12, 35445–35452.

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y.; Feng, X.; Sui, C.; Xu, J.; Zhao, W.; Yan, S. Highly entangled elastomer with ultra-fast self-healing capability and high mechanical strength. Chem. Eng. J. 2024, 479, 147689.

    Article  CAS  Google Scholar 

  31. Lai, J.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35, 6754–6756.

    Article  ADS  CAS  Google Scholar 

  32. Pan, J.; Zeng, H.; Gao, L.; Zhang, Q.; Luo, H.; Shi, X.; Zhang, H. Hierarchical multiscale hydrogels with identical compositions yet disparate properties via tunable phase separation. Adv. Funct. Mater. 2022, 32, 2110277.

    Article  CAS  Google Scholar 

  33. Chen, Y.; Kushner, A.; Williams, G.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, 2005759.

    Article  CAS  Google Scholar 

  35. Xiang, H.; Li, X.; Wu, B.; Sun, S.; Wu, P. Highly damping and self-healable ionic elastomer from dynamic phase separation of sticky fluorinated polymers. Adv. Mater. 2023, 35, 2209581.

    Article  CAS  Google Scholar 

  36. Yao, Y.; Liu, B.; Xu, Z.; Yang, J.; Liu, W. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Mater. Horiz. 2021, 8, 2742.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J.; Liu, L.; Li, C.; Yan, X.; Liu, C.; Tok, J.; Jia, X.; Bao, Z. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, 30, 1801435.

    Article  Google Scholar 

  38. Peng, Y.; Zhao, L.; Yang, C.; Yang, Y.; Song, C.; Wu, Q.; Huang, G.; Wu, J. Super tough and strong self-healing elastomers based on polyampholytes. J. Mater. Chem. A 2018, 6, 19066.

    Article  CAS  Google Scholar 

  39. Zhao, P.; Yin, C.; Zhang, Y.; Chen, X.; Yang, B.; Xia, J.; Bian, L. Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. J. Mater. Chem. A 2020, 8, 12463.

    Article  CAS  Google Scholar 

  40. Su, G.; Yin, S.; Guo, Y.; Zhao, F.; Guo, Q.; Zhang, X.; Zhou, T.; Yu, G. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8, 1795.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Y.; Wang, H.; Huang, L.; Nishiura, M.; Higaki, Y.; Hou, Z. Terpolymerization of ethylene and two different methoxyaryl-substituted propylenes by scandium catalyst makes tough and fast self-healing elastomers. Angew. Chem. Int. Ed. 2021, 60, 26192–26198.

    Article  CAS  Google Scholar 

  42. Tang, M.; Li, Z.; Wang, K.; Jiang, Y.; Tian, M.; Qin, Y.; Gong, Y.; Li, Z.; Wu, L. Ultrafast self-healing and self-adhesive polysiloxane towards reconfigurable on-skin electronics. J. Mater. Chem. A 2022, 10, 1750–1759.

    Article  CAS  Google Scholar 

  43. Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 2021, 60, 7947–7955.

    Article  CAS  Google Scholar 

  44. Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. A fast room-temperature self-healing glassy polyurethane. Nat. Nanotechnol. 2012, 7, 825–832.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shandong Province (No. ZR2022MB122), “Qingchuang science and technology plan” project of colleges and Universities in Shandong Province (No. 2020KJC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Peng Zhao or Shou-Ke Yan.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhu, L., Feng, XQ. et al. Effect of Phase Separation Size on the Properties of Self-healing Elastomer. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3097-5

Keywords

Navigation