Skip to main content
Log in

Polyelectrolyte Complexes and Coacervates Formed by De novo-Designed Peptides and Oligonucleotide

  • Research Article
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment. Resolving the regulation mechanism is still a challenge. In this work, we designed a series of peptides (XXLY)6SSSGSS and studied their complexation and coacervation behavior with single-stranded oligonucleotides. The “X” and “Y” are varied to combine known amounts of charged and non-charged amino acids, together with the introduction of secondary structures and pH responsiveness. Results show that the electrostatic interaction, which is described as charge density, controls both the strength of complexation and the degree of chain relaxation, and thus determines the growth and size of the coacervates. The hydrophobic interaction is prominent when the charges are neutralized. Interestingly, the secondary structures of peptides exhibit profound effect on the morphology of the phases, such as solid phase to liquid phase transition. Our study gains insight into the phase separation under physiological conditions. It is also helpful to create coacervates with desirable structures and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: https://doi.org/10.57760/sciencedbij00189i00004) for this paper is available in the Data Repository of China Association for Science and Technology (https://www.scidb.cn/s/jAvIzq).

References

  1. Meka, V. S.; Singe, M. K. G.; Pichika, M. R.; Nali, S. R.; Kolapaili, V. R. M.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes. Drug Discov. Today 2017, 22, 1697–1706.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, H. D.; Sato, T. Polymer colloids formed by polyelectrolyte complexation of vinyl polymers and polysaccharides in aqueous solution. Chinese J. Polym. Sci. 2013, 31, 39–49.

    Article  Google Scholar 

  3. Shi, X. H.; Chen, L.; Liu, B. W.; Long, J. W.; Xu, Y. J.; Wang, Y. Z. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chinese J. Polym. Sci. 2018, 36, 1375–1384.

    Article  CAS  Google Scholar 

  4. Huang, W. T.; Li, J. F.; Liu, D. Z.; Tan, S. X.; Zhang, P. F.; Zhu, L. P.; Yang, S. G. Polyelectrolyte complex fiber of alginate and poly(diallyldimethylammonium chloride): humidity-induced shape memory and mechanical transition. ACS Appl. Polym. Mater. 2020, 2, 2119–2125.

    Article  CAS  Google Scholar 

  5. Huang, W. T.; Liu, D. Z.; Zhu, L. P.; Yang, S. G. A salt controlled scalable approach for formation of polyelectrolyte complex fiber. Chinese J. Chem. 2020, 38, 465–470.

    Article  CAS  Google Scholar 

  6. Yewdall, N. A.; André, A. A. M.; Lu, T. M.; Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid In. 2021, 52, 101416.

    Article  CAS  Google Scholar 

  7. Gao, N.; Mann, S. Membranized coacervate microdroplets: from versatile protocell models to cytomimetic materials. Acc. Chem. Res. 2023, 56, 297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mu, W. J.; Ji, Z.; Zhou, M. S.; Wu, J. Z.; Lin, Y. Y.; Qiao, Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. Sci. Adv. 2021, 7, eabf9000.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moreau, N. G.; Martin, N.; Gobbo, P.; Tang, T. Y. D.; Mann, S. Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets. Chem. Commun. 2020, 56, 12717–12720.

    Article  CAS  Google Scholar 

  10. Blocher, W. C.; Perry, S. L. Complex coacervate-based materials for biomedicine. Wires Nanomed Nanobi. 2017, 9, e1442.

    Article  Google Scholar 

  11. McTigue, W. C. B.; Perry, S. L. Protein encapsulation using complex coacervates: what nature has to teach us. Small 2020, 16, 1907671.

    Google Scholar 

  12. Sun, Y.; Lau, S. Y.; Lim, Z. W.; Chang, S. C.; Ghadessy, F.; Partridge, A.; Miserez, A. Phase- separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 2022, 14, 274–283.

    Article  CAS  PubMed  Google Scholar 

  13. Ban, E.; Kim, A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int. J. Pharmaceut. 2022, 624, 122058.

    Article  CAS  Google Scholar 

  14. Johnson, N. R.; Wang, Y. D. Coacervate delivery systems for proteins and small molecule drugs. Expert Opin. Drug. Del. 2014, 11, 1829–1832.

    Article  CAS  Google Scholar 

  15. Wang, J.; Abbas, M.; Huang, Y.; Wang, J.; Li, Y. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs. Commun. Chem. 2023, 6, 243.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Turgeon, S. L.; Schmitt, C.; Sanchez, C. Protein-polysaccharide complexes and coacervates. Curr. Opin. Colloid. In. 2007, 12, 166–178.

    Article  CAS  Google Scholar 

  17. Chen, S. J.; Guo, Q.; Yu, J. Bio-inspired functional coacervates. Aggregate 2022, 3, e293.

    Article  CAS  Google Scholar 

  18. Stewart, R. J.; Wang, C. S.; Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface 2011, 167, 85–93.

    Article  CAS  Google Scholar 

  19. Forooshani, P. K.; Lee, B. P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9–33.

    Article  ADS  Google Scholar 

  20. Rumyantsev, A. M.; Jackson, N. E.; de Pablo, J. J. Polyelectrolyte complex coacervates: recent developments and new frontiers. Annu. Rev. Conden. Ma. P 2021, 12, 155–176.

    Article  Google Scholar 

  21. Oparin, A. I. The Origin of Life. MacMillan: New York, 1938, 1–6.

    Google Scholar 

  22. Fry, I. The origins of research into the origins of life. Endeavour 2006, 30, 24–28.

    Article  CAS  PubMed  Google Scholar 

  23. Gözen, I.; Köksal, E. S.; Poldsalu, I.; Xue, L.; Spustova, K.; Pedrueza-Villalmanzo, E.; Ryskulov, R.; Meng, F. D.; Jesorka, A. Protocells: milestones and recent advances. Small 2022, 18, 2106624.

    Article  Google Scholar 

  24. Li, F.; Lin, Y. Y.; Qiao, Y. Regulating FUS liquid-liquid phase separation via specific metal recognition. Chinese J. Polym. Sci. 2022, 40, 1043–1049.

    Article  Google Scholar 

  25. Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv. Colloid Interface 2011, 167, 2–11.

    Article  CAS  Google Scholar 

  26. Sing, C. E.; Perry, S. L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Overbeek, J. T. G. a. V., M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 1957, 49, 7–26.

    Article  CAS  Google Scholar 

  28. Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. Phase separation of polyelectrolyte solutions. J. Polym. Sci. 1957, 23, 443–450.

    Article  ADS  CAS  Google Scholar 

  29. Shi, A. C.; Noolandi, J. Theory of inhomogeneous weakly charged polyelectrolytes. Macromol. Theor. Simul. 1999, 8, 214–229.

    Article  CAS  Google Scholar 

  30. Wang, Q.; Taniguchi, T.; Fredrickson, G. H. Self-consistent field theory of polyelectrolyte systems. J. Phys. Chem. B 2004, 108, 6733–6744.

    Article  CAS  Google Scholar 

  31. Shusharina, N. P.; Zhulina, E. B.; Dobrynin, A. V.; Rubinstein, M. Scaling theory of diblock polyampholyte solutions. Macromolecules 2005, 38, 8870–8881.

    Article  ADS  CAS  Google Scholar 

  32. Wang, Z. W.; Rubinstein, M. Regimes of conformational transitions of a diblock polyampholyte. Macromolecules 2006, 39, 5897–5912.

    Article  ADS  CAS  Google Scholar 

  33. Sing, C. E. Development of the modern theory of polymeric complex coacervation. Adv. Colloid Interface 2017, 239, 2–16.

    Article  CAS  Google Scholar 

  34. Tabandeh, S.; Leon, L. Engineering peptide-based polyelectrolyte complexes with increased hydrophobicity. Molecules 2019, 24, 868.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, J.; Laaser, J. E. Charge density and hydrophobicity-dominated regimes in the phase behavior of complex coacervates. ACS Macro Lett. 2021, 10, 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  36. Vieregg, J. R.; Lueckheide, M.; Marciel, A. B.; Leon, L.; Bologna, A. J.; Rivera, J. R.; Tirrell, M. V. Oligonucleotide-peptide complexes: phase control by hybridization. J. Am. Chem. Soc. 2018, 140, 1632–1638.

    Article  CAS  PubMed  Google Scholar 

  37. Pacalin, N. M.; Leon, L.; Tirrell, M. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides. Eur. Phys. J.-Spec. Top. 2016, 225, 1805–1815.

    Article  CAS  Google Scholar 

  38. Cheng, C.; Tu, Z. C.; Wang, H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: phase behavior and structural properties. Food Res. Int. 2023, 167, 112652.

    Article  CAS  PubMed  Google Scholar 

  39. Kaibara, K.; Okazaki, T.; Bohidar, H. B.; Dubin, P. L. pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes. Biomacromolecules 2000, 1, 100–107.

    Article  CAS  PubMed  Google Scholar 

  40. Priftis, D.; Tirrell, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 2012, 8, 9396–9405.

    Article  ADS  CAS  Google Scholar 

  41. Perry, S. L.; Li, Y.; Priftis, D.; Leon, L.; Tirrell, M. The effect of salt on the complex coacervation of vinyl polyelectrolytes. Polymers 2014, 6, 1756–1772.

    Article  Google Scholar 

  42. Love, C.; Steinkühler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. Y. D. Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angew. Chem. Int. Ed. 2020, 59, 5950–5957.

    Article  CAS  Google Scholar 

  43. Zhou, J.; Wan, Y.; Cohen Stuart, M. A.; Wang, M.; Wang, J. Effects of control factors on protein-polyelectrolyte complex coacervation. Biomacromolecules Article ASAP.

  44. Mart, R. J.; Osborne, R. D.; Stevens, M. M.; Ulijn, R. V. Peptide-based stimuli-responsive biomaterials. Soft Matter 2006, 2, 822–835.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ulijn, R. V.; Woolfson, D. N. Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 2010, 39, 3349–3350.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, L.; Wang, N. X.; Zhang, W. P.; Cheng, X. R.; Yan, Z. B.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Y. Therapeutic peptides: current applications and future directions. Signal Transduct Tar. 2022, 7, 48.

    Article  CAS  Google Scholar 

  47. Bai, Q. W.; Zhang, Q. F.; Jing, H. R.; Chen, J. X.; Liang, D. H. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media. J. Phys. Chem. B 2021, 125, 49–57.

    Article  CAS  PubMed  Google Scholar 

  48. Kyte, J.; Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 177, 105–132.

    Article  Google Scholar 

  49. Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1104.

    Article  CAS  PubMed  Google Scholar 

  50. Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry. Worth Publishers: New York, 1982, 615–643.

    Google Scholar 

  51. Wang, H.; Davis, R. H. Collective effects of gravitational and Brownian coalescence on droplet growth. J Colloid Interf. Sci. 1996, 178, 47–52.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21973002). The measurements of LCSM were performed at the Analytical Instrumentation Center of Peking University. We acknowledge the assistance and support from PKUAIC (Dr. Yan Guan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hai Liang.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

Supplementary material, approximately 4.26 MB.

Supplementary material, approximately 2.38 MB.

Supplementary material, approximately 11.2 MB.

Supplementary material, approximately 13.9 MB.

Supplementary material, approximately 16.9 MB.

Supplementary material, approximately 19.4 MB.

Supplementary material, approximately 10.9 MB.

Supplementary material, approximately 4.03 MB.

Supplementary material, approximately 1.22 MB.

Supplementary material, approximately 2.91 MB.

Supplementary material, approximately 3.17 MB.

Supplementary material, approximately 1.92 MB.

Supplementary material, approximately 3.28 MB.

Supplementary material, approximately 1.07 MB.

Supplementary material, approximately 1.50 MB.

Supplementary material, approximately 3.02 MB.

Supplementary material, approximately 3.24 MB.

Supplementary material, approximately 1.98 MB.

Supplementary material, approximately 12.7 MB.

Supplementary material, approximately 4.10 MB.

Supplementary material, approximately 5.24 MB.

Polyelectrolyte Complexes and Coacervates Formed by De novo-Designed Peptides and Oligonucleotide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, TH., Liang, DH. Polyelectrolyte Complexes and Coacervates Formed by De novo-Designed Peptides and Oligonucleotide. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3096-6

Keywords

Navigation