Abstract
To simultaneously endow thermal conductivity, high glass transition temperature (Tg) and healing capability to glass fiber/epoxy (GFREP) composite, dynamic crosslinked epoxy resin bearing reversible β-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth (GFC@BNNSs). The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs. Then, the GFC@BNNSs were impregnated with the mixture of lower concentration (3-glycidyloxypropyl) trimethoxysilane grafted BN micron sheets, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride, which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances. The resultant GFREP composite containing less boron nitride particles (17.6 wt%) exhibited superior in-plane (3.29 W·m−1·K−1) and through-plane (1.16 W·m−1·K−1) thermal conductivities, as well as high Tg of 204 °C (Tg of the unfilled epoxy=177 °C). The reversible transesterification reaction enabled closure of interlaminar cracks within the composite, achieving decent healing efficiencies estimated by means of tensile strength (71.2%), electrical breakdown strength (83.6%) and thermal conductivity (69.1%). The present work overcame the disadvantages of conventional thermally conductive composites, and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request. The authors’ contact information: zhangzp8@mail.sysu.edu.cn (Z.P.Z.), ceszmq@mail.sysu.edu.cn (M.Q.Z.).
References
Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, C. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.
Wu, X. F.; Tang, B.; Chen, J.; Shan, L. M.; Gao, Y.; Yang, K.; Wang, Y.; Sun, K.; Fan, R. H.; Yu, J. H. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Compos. Sci. Technol. 2021, 203, 108610.
Zhou, M.; Yin, G.; Prolongo S. G. Review of thermal conductivity in epoxy thermosets and composites: mechanisms, parameters, and filler influences. Adv. Ind. Eng. Polym. Res. 2023, https://doi.org/10.1016/j.aiepr.2023.08.003.
Guo, S. H.; Zheng, R.; Jiang, J. T.; Yu, J. H.; Dai, K.; Yan, C. Enhanced thermal conductivity and retained electrical insulation of heat spreader by incorporating alumina-deposited graphene filler in nano-fibrillated cellulose. Compos. Part B 2019, 178, 107489.
Lu, L.; Jian, P.; Li, G. Recyclable high performance epoxy based on transesterification reaction. J. Mater. Chem. A 2017, 5, 21505–21513.
Chen, F.; Xiao, H.; Peng, Z. Q.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 2021, 4, 1048–1058.
Lafont, U.; van Zeijl, H.; van der Zwaag, S. Increasing the reliability of solid state lighting systems via self-healing approaches: a review. Microelectron. Reliab. 2012, 52, 71–89.
Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10.
Yao, Y.; Zeng, X.; Guo, K.; Sun, R.; Xu, J. B. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos. Part A 2015, 69, 49–55.
Ge, M.; Zhang, J.; Zhao, C.; Lu, C.; Du, G. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Mater. Design 2019, 182, 108028.
Zhang, J.; Qi, S. Mechanical, thermal, and dielectric properties of aluminum nitride/glass fiber/epoxy resin composites. Polym. Compos. 2014, 35, 381–385.
Zhu, C. Y.; Yu, G. L.; Ren, X.; Huang, B. H.; Gong, L. Modelling of the effective thermal conductivity of composites reinforced with fibers and particles by two-step homogenization method. Compos. Sci. Technol. 2022, 230, 109766.
Jin, Y.; Ye, L.; Chai, Y.; Hong, J.; Li, Y. Tailoring asymmetric filler arrangement by hollow glass microspheres towards polymer composites with improved through-plane thermal conductivity. Compos. Sci. Technol. 2023, 233, 109904.
Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.
Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 2023, 62, e202309010.
Han, Y.; Ruan, K.; Gu, J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 2023, 62, e202216093.
Ma, T.; Ruan, K.; Guo, Y.; Han, Y.; Gu, J. Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3D printing. Sci. China Mater. 2023, 66, 4012–4021.
Ma, T.; Ma, H.; Ruan, K.; Shi, X.; Qiu, H.; Gao, S.; Gu, J. Thermally conductive polyl(actic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. 2022, 40, 248–255.
Xu, H.; Gou, B.; He, J.; Lu, Y.; Chen, H.; Li, L.; Xie, C.; Hu, X. M. Tunable nonlinear conductive behavior without percolation threshold and high thermal conductivity of epoxy resin/SiC ceramic foam co-continuous phase composites. Compos. Sci. Technol. 2023, 236, 109984.
Zhang, M. Q. Self-healing polymeric materials: On a winding road to success. Chinese J. Polym. Sci. 2022, 40, 1315–1316.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci. 2023, 144, 101724.
Lafont, U.; Moreno-Belle, C.; van Zeijl, H.; van der Zwaag, S. Self-healing thermally conductive adhesives. J. Intell. Mater. Syst. Struct. 2014, 25, 67–74.
Zhong, N.; Garcia, S. J.; van der Zwaag, S. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix. Smart Mater. Struct. 2016, 25, 084016.
Xing, L.; Li, Q.; Zhang, G.; Zhang, X.; Liu, F.; Liu, L.; Huang, Y.; Wang, Q. Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv. Funct. Mater. 2016, 26, 3524–3531.
Jiang, H.; Wang, Z.; Geng, H.; Song, X.; Zeng, H.; Zhi, C. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl. Mater. Interfaces 2017, 9, 10078–10084.
Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.
Yu, H.; Feng, Y.; Gao, L.; Chen, C.; Zhang, Z.; Feng, W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 2020, 53, 7161–7170.
Zhao, L. W.; Shi, X. R.; Yin, Y.; Jiang, B.; Huang, Y. D. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 2020, 186, 107919.
Huang, L. Y.; Yang, Y. X.; Wu, R. Y.; Fan, W. F.; Dai, Q. Q.; He, J. Y.; Bai, C. X. Boron nitride and hyperbranched polyamide assembled recyclable polyisoprene vitrimer with robust mechanical properties, high thermal conductivity and remoldability. Polymer 2020, 208, 122964.
Chen, C.; Yu, H.; Feng, Y.; Feng, W. Polymer composite material with both thermal conduction and self-healing functions. Acta Polymerica Sinica (in Chinese) 2021, 52, 272–280.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.
Liu, Z.; Fan, X.; Han, M.; Li, H.; Zhang, J.; Chen, L.; Zhu, Q.; Gu, J. Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 2023, 41, 939–950.
Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792.
Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun. 2022, 13, 2633.
Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 2023, 35, 2211009.
Aaontarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.
Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Adv. 2014, 4, 48682–48690.
Hao, C.; Liu, T.; Zhang, S.; Liu, W.; Shan, Y.; Zhang, J. Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules 2020, 53, 3110–3118.
Zhao, S.; Yang, H.; Wang, D.; Russell, T. P. A simple, efficient route to modify the properties of epoxy dynamic polymer networks. Soft Matter 2022, 18, 382–389.
Xiao, H.; Zhang, Z. P.; Huang, Z. X.; Rong, M. Z.; Zhang, M. Q. Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos. Commun. 2021, 23, 100584.
Kim, K.; Kim, M.; Hwang, Y.; Kim, J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram. Int. 2014, 40, 2047–2056.
Kim, K.; Kim, J. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram. Int. 2014, 40, 5181–5189.
Shi, X.; Zhang, R.; Ruan, K.; Ma, T.; Guo, Y.; Gu, J. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 2021, 82, 239–249.
Vu, M.; Tran, T.; Bae, Y.; Yu, M.; Doan, V.; Lee, J.; An, T.; Kim, S. Self-assembly of carbon nanotubes and boron nitride via electrostatic interaction for epoxy composites of high thermal conductivity and electrical resistivity. Macromol. Res. 2018, 26, 521–528.
Zhang, S.; Li, X.; Guan, X.; Shi, Y.; Wu, K.; Liang, L.; Shi, J.; Lu, M. Synthesis of pyridine-containing diamine and properties of its polyimides and polyimide/hexagonal boron nitride composite films. Compos. Sci. Technol. 2017, 152, 165–172.
Xiao, H.; Huang, Z. H.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites. Compos. Sci. Technol. 2022, 230, 109087.
Zhang, J.; Qi, S. Preparation and properties of silicon nitride/glass fiber/epoxy composites. Polym. Compos. 2014, 35, 1338–1342.
Xiao, H.; Chen, F.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Dihydromyricetin modification of boron nitride micro-sheets and construction of multilayer thermal conduction pathways in glass fiber reinforced epoxy composites. Compos. Part B 2021, 215, 108770.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Research progress of processing of crosslinked polymers based on reversible covalent chemistry: a new challenge to the development of polymer engineering. Acta Polymerica Sinica (in Chinese) 2018, 829–852.
You, Y.; Rong, M. Z.; Zhang, M. Q. Reversibly interlocked polymer networks: Design, preparation and applications. Acta Polymerica Sinica (in Chinese) 2023, 54, 14–36.
Li, Z.; Zhong, J.; Liu, M. C.; Rong, J. C.; Yang, K.; Zhou, J. Y.; Shen, L.; Gao, F.; He, H. F. Investigation on self-healing property of epoxy resins based on disulfide dynamic links. Chinese J. Polym. Sci. 2020, 38, 932–940.
Zhao, C. B.; Feng, L. K.; Xie, H.; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding. Chinese J. Polym. Sci. 2023, https://doi.org/10.1007/s10118-023-3045-9
Chen, J. H.; An, X. P.; Li, Y. D.; Wang, M.; Zeng, J. B. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability. Chinese J. Polym. Sci. 2018, 36, 641–648.
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 52033011, 51973237 and 52373095), Natural Science Foundation of Guangdong Province, China (Nos. 2019B1515120038 and 2021A1515010417), Science and Technology Planning Project of Guangdong Province (No. 2020B010179001), Science and Technology Planning Project of Guangzhou City (No. 202201011568), GBRCE for Functional Molecular Engineering, and Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23yxqntd002).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare no interest conflict.
Rights and permissions
About this article
Cite this article
Chen, F., Pang, XY., Zhang, ZP. et al. Thermally Conductive, Healable Glass Fiber Cloth Reinforced Polymer Composite based on β-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance. Chin J Polym Sci 42, 643–654 (2024). https://doi.org/10.1007/s10118-024-3076-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-024-3076-x