Skip to main content
Log in

Thermally Conductive, Healable Glass Fiber Cloth Reinforced Polymer Composite based on β-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To simultaneously endow thermal conductivity, high glass transition temperature (Tg) and healing capability to glass fiber/epoxy (GFREP) composite, dynamic crosslinked epoxy resin bearing reversible β-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth (GFC@BNNSs). The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs. Then, the GFC@BNNSs were impregnated with the mixture of lower concentration (3-glycidyloxypropyl) trimethoxysilane grafted BN micron sheets, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride, which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances. The resultant GFREP composite containing less boron nitride particles (17.6 wt%) exhibited superior in-plane (3.29 W·m−1·K−1) and through-plane (1.16 W·m−1·K−1) thermal conductivities, as well as high Tg of 204 °C (Tg of the unfilled epoxy=177 °C). The reversible transesterification reaction enabled closure of interlaminar cracks within the composite, achieving decent healing efficiencies estimated by means of tensile strength (71.2%), electrical breakdown strength (83.6%) and thermal conductivity (69.1%). The present work overcame the disadvantages of conventional thermally conductive composites, and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The authors’ contact information: zhangzp8@mail.sysu.edu.cn (Z.P.Z.), ceszmq@mail.sysu.edu.cn (M.Q.Z.).

References

  1. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, C. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

    CAS  Google Scholar 

  2. Wu, X. F.; Tang, B.; Chen, J.; Shan, L. M.; Gao, Y.; Yang, K.; Wang, Y.; Sun, K.; Fan, R. H.; Yu, J. H. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Compos. Sci. Technol. 2021, 203, 108610.

    CAS  Google Scholar 

  3. Zhou, M.; Yin, G.; Prolongo S. G. Review of thermal conductivity in epoxy thermosets and composites: mechanisms, parameters, and filler influences. Adv. Ind. Eng. Polym. Res. 2023, https://doi.org/10.1016/j.aiepr.2023.08.003.

  4. Guo, S. H.; Zheng, R.; Jiang, J. T.; Yu, J. H.; Dai, K.; Yan, C. Enhanced thermal conductivity and retained electrical insulation of heat spreader by incorporating alumina-deposited graphene filler in nano-fibrillated cellulose. Compos. Part B 2019, 178, 107489.

    CAS  Google Scholar 

  5. Lu, L.; Jian, P.; Li, G. Recyclable high performance epoxy based on transesterification reaction. J. Mater. Chem. A 2017, 5, 21505–21513.

    CAS  Google Scholar 

  6. Chen, F.; Xiao, H.; Peng, Z. Q.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 2021, 4, 1048–1058.

    CAS  Google Scholar 

  7. Lafont, U.; van Zeijl, H.; van der Zwaag, S. Increasing the reliability of solid state lighting systems via self-healing approaches: a review. Microelectron. Reliab. 2012, 52, 71–89.

    Google Scholar 

  8. Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10.

    Google Scholar 

  9. Yao, Y.; Zeng, X.; Guo, K.; Sun, R.; Xu, J. B. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos. Part A 2015, 69, 49–55.

    CAS  Google Scholar 

  10. Ge, M.; Zhang, J.; Zhao, C.; Lu, C.; Du, G. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Mater. Design 2019, 182, 108028.

    CAS  Google Scholar 

  11. Zhang, J.; Qi, S. Mechanical, thermal, and dielectric properties of aluminum nitride/glass fiber/epoxy resin composites. Polym. Compos. 2014, 35, 381–385.

    CAS  Google Scholar 

  12. Zhu, C. Y.; Yu, G. L.; Ren, X.; Huang, B. H.; Gong, L. Modelling of the effective thermal conductivity of composites reinforced with fibers and particles by two-step homogenization method. Compos. Sci. Technol. 2022, 230, 109766.

    CAS  Google Scholar 

  13. Jin, Y.; Ye, L.; Chai, Y.; Hong, J.; Li, Y. Tailoring asymmetric filler arrangement by hollow glass microspheres towards polymer composites with improved through-plane thermal conductivity. Compos. Sci. Technol. 2023, 233, 109904.

    CAS  Google Scholar 

  14. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    CAS  Google Scholar 

  15. Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 2023, 62, e202309010.

    CAS  Google Scholar 

  16. Han, Y.; Ruan, K.; Gu, J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 2023, 62, e202216093.

    CAS  Google Scholar 

  17. Ma, T.; Ruan, K.; Guo, Y.; Han, Y.; Gu, J. Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3D printing. Sci. China Mater. 2023, 66, 4012–4021.

    CAS  Google Scholar 

  18. Ma, T.; Ma, H.; Ruan, K.; Shi, X.; Qiu, H.; Gao, S.; Gu, J. Thermally conductive polyl(actic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. 2022, 40, 248–255.

    CAS  Google Scholar 

  19. Xu, H.; Gou, B.; He, J.; Lu, Y.; Chen, H.; Li, L.; Xie, C.; Hu, X. M. Tunable nonlinear conductive behavior without percolation threshold and high thermal conductivity of epoxy resin/SiC ceramic foam co-continuous phase composites. Compos. Sci. Technol. 2023, 236, 109984.

    CAS  Google Scholar 

  20. Zhang, M. Q. Self-healing polymeric materials: On a winding road to success. Chinese J. Polym. Sci. 2022, 40, 1315–1316.

    CAS  Google Scholar 

  21. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci. 2023, 144, 101724.

    CAS  Google Scholar 

  22. Lafont, U.; Moreno-Belle, C.; van Zeijl, H.; van der Zwaag, S. Self-healing thermally conductive adhesives. J. Intell. Mater. Syst. Struct. 2014, 25, 67–74.

    CAS  Google Scholar 

  23. Zhong, N.; Garcia, S. J.; van der Zwaag, S. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix. Smart Mater. Struct. 2016, 25, 084016.

    Google Scholar 

  24. Xing, L.; Li, Q.; Zhang, G.; Zhang, X.; Liu, F.; Liu, L.; Huang, Y.; Wang, Q. Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv. Funct. Mater. 2016, 26, 3524–3531.

    CAS  Google Scholar 

  25. Jiang, H.; Wang, Z.; Geng, H.; Song, X.; Zeng, H.; Zhi, C. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl. Mater. Interfaces 2017, 9, 10078–10084.

    CAS  PubMed  Google Scholar 

  26. Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

    CAS  Google Scholar 

  27. Yu, H.; Feng, Y.; Gao, L.; Chen, C.; Zhang, Z.; Feng, W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 2020, 53, 7161–7170.

    CAS  Google Scholar 

  28. Zhao, L. W.; Shi, X. R.; Yin, Y.; Jiang, B.; Huang, Y. D. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 2020, 186, 107919.

    CAS  Google Scholar 

  29. Huang, L. Y.; Yang, Y. X.; Wu, R. Y.; Fan, W. F.; Dai, Q. Q.; He, J. Y.; Bai, C. X. Boron nitride and hyperbranched polyamide assembled recyclable polyisoprene vitrimer with robust mechanical properties, high thermal conductivity and remoldability. Polymer 2020, 208, 122964.

    CAS  Google Scholar 

  30. Chen, C.; Yu, H.; Feng, Y.; Feng, W. Polymer composite material with both thermal conduction and self-healing functions. Acta Polymerica Sinica (in Chinese) 2021, 52, 272–280.

    CAS  Google Scholar 

  31. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.

    CAS  Google Scholar 

  32. Liu, Z.; Fan, X.; Han, M.; Li, H.; Zhang, J.; Chen, L.; Zhu, Q.; Gu, J. Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 2023, 41, 939–950.

    CAS  Google Scholar 

  33. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792.

    CAS  PubMed  Google Scholar 

  34. Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun. 2022, 13, 2633.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 2023, 35, 2211009.

    CAS  Google Scholar 

  36. Aaontarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Google Scholar 

  37. Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Adv. 2014, 4, 48682–48690.

    CAS  Google Scholar 

  38. Hao, C.; Liu, T.; Zhang, S.; Liu, W.; Shan, Y.; Zhang, J. Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules 2020, 53, 3110–3118.

    CAS  Google Scholar 

  39. Zhao, S.; Yang, H.; Wang, D.; Russell, T. P. A simple, efficient route to modify the properties of epoxy dynamic polymer networks. Soft Matter 2022, 18, 382–389.

    CAS  PubMed  Google Scholar 

  40. Xiao, H.; Zhang, Z. P.; Huang, Z. X.; Rong, M. Z.; Zhang, M. Q. Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos. Commun. 2021, 23, 100584.

    Google Scholar 

  41. Kim, K.; Kim, M.; Hwang, Y.; Kim, J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram. Int. 2014, 40, 2047–2056.

    CAS  Google Scholar 

  42. Kim, K.; Kim, J. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram. Int. 2014, 40, 5181–5189.

    CAS  Google Scholar 

  43. Shi, X.; Zhang, R.; Ruan, K.; Ma, T.; Guo, Y.; Gu, J. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 2021, 82, 239–249.

    CAS  Google Scholar 

  44. Vu, M.; Tran, T.; Bae, Y.; Yu, M.; Doan, V.; Lee, J.; An, T.; Kim, S. Self-assembly of carbon nanotubes and boron nitride via electrostatic interaction for epoxy composites of high thermal conductivity and electrical resistivity. Macromol. Res. 2018, 26, 521–528.

    CAS  Google Scholar 

  45. Zhang, S.; Li, X.; Guan, X.; Shi, Y.; Wu, K.; Liang, L.; Shi, J.; Lu, M. Synthesis of pyridine-containing diamine and properties of its polyimides and polyimide/hexagonal boron nitride composite films. Compos. Sci. Technol. 2017, 152, 165–172.

    CAS  Google Scholar 

  46. Xiao, H.; Huang, Z. H.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites. Compos. Sci. Technol. 2022, 230, 109087.

    CAS  Google Scholar 

  47. Zhang, J.; Qi, S. Preparation and properties of silicon nitride/glass fiber/epoxy composites. Polym. Compos. 2014, 35, 1338–1342.

    CAS  Google Scholar 

  48. Xiao, H.; Chen, F.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Dihydromyricetin modification of boron nitride micro-sheets and construction of multilayer thermal conduction pathways in glass fiber reinforced epoxy composites. Compos. Part B 2021, 215, 108770.

    CAS  Google Scholar 

  49. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Research progress of processing of crosslinked polymers based on reversible covalent chemistry: a new challenge to the development of polymer engineering. Acta Polymerica Sinica (in Chinese) 2018, 829–852.

  50. You, Y.; Rong, M. Z.; Zhang, M. Q. Reversibly interlocked polymer networks: Design, preparation and applications. Acta Polymerica Sinica (in Chinese) 2023, 54, 14–36.

    CAS  Google Scholar 

  51. Li, Z.; Zhong, J.; Liu, M. C.; Rong, J. C.; Yang, K.; Zhou, J. Y.; Shen, L.; Gao, F.; He, H. F. Investigation on self-healing property of epoxy resins based on disulfide dynamic links. Chinese J. Polym. Sci. 2020, 38, 932–940.

    Google Scholar 

  52. Zhao, C. B.; Feng, L. K.; Xie, H.; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding. Chinese J. Polym. Sci. 2023, https://doi.org/10.1007/s10118-023-3045-9

  53. Chen, J. H.; An, X. P.; Li, Y. D.; Wang, M.; Zeng, J. B. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability. Chinese J. Polym. Sci. 2018, 36, 641–648.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52033011, 51973237 and 52373095), Natural Science Foundation of Guangdong Province, China (Nos. 2019B1515120038 and 2021A1515010417), Science and Technology Planning Project of Guangdong Province (No. 2020B010179001), Science and Technology Planning Project of Guangzhou City (No. 202201011568), GBRCE for Functional Molecular Engineering, and Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23yxqntd002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Ping Zhang or Ming-Qiu Zhang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Pang, XY., Zhang, ZP. et al. Thermally Conductive, Healable Glass Fiber Cloth Reinforced Polymer Composite based on β-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance. Chin J Polym Sci 42, 643–654 (2024). https://doi.org/10.1007/s10118-024-3076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3076-x

Keywords

Navigation