Skip to main content
Log in

Significantly Enhanced Energy Storage Performances of PEI-based Composites Utilizing Surface Functionalized ZrO2 Nanoparticles for High-Temperature Application

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer dielectrics with a high energy density and an available energy storage capacity have been playing an important role in advanced electronics and power systems. Nevertheless, the use of polymer dielectrics in harsh environments is limited by their low energy density at high temperatures. Herein, zirconium dioxide (ZrO2) nanoparticles were decorated with amino group utilizing 4,4-methylenebis (phenyl isocyanate) (AMEO) and successfully incorporated into polyetherimide (PEI) matrix. The dielectric properties, breakdown strength, and energy storage performances of PEI/ZrO2-AMEO nanocomposites were investigated from 25 °C to 150 °C. It is found that the combination of moderate bandgap ZrO2 with modest dielectric constant and polar groups at interface with deep trap can offer an available strategy to simultaneously increase the dielectric constant and breakdown strength of polymer dielectrics. As a result, the composites containing ZrO2-AMEO exhibit excellent energy storage performance at elevated temperatures. Specially, the PEI-based composites with 3 vol% ZrO2-AMEO display a maximum discharged energy density (Ud) of 3.1 J/cm3 at 150 °C, presenting 90% higher than that of neat PEI. This study may help to better develop the polymer-based dielectric composite applied at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dang, Z.; Yuan, J.; Yao, S.; Liao, R. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365.

    Article  CAS  PubMed  Google Scholar 

  2. Hu, P.; Shen, Y.; Guan, Y.; Zhang, X.; Lin, Y.; Zhang, Q.; Nan, C. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 2014, 24, 3172–3178.

    Article  CAS  Google Scholar 

  3. Palit, S.; Varghese, D.; Guo, H.; Krishnan, S.; Alam, M. A. The role of dielectric heating and effects of ambient humidity in the electrical breakdown of polymer dielectrics. IEEE Trans. Device Mat. Rel. 2015, 15, 308–318.

    Article  CAS  Google Scholar 

  4. Feng, S.; Zhou, Y.; Zhang, T.; Zhang, C; Zhang, Y.; Zhang, Y.; Chen, Q.; Chi, Q. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Stor. Mater. 2020, 25, 180–192.

    Google Scholar 

  5. Luo, S.; Yu, J.; Yu, S.; Sun, R.; Cao, L.; Liao, W.; Wong, C. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 2019, 9, 1803204.

    Article  Google Scholar 

  6. Fan, M.; Hu, P.; Dan, Z.; Jiang, J.; Sun, B.; Shen, Y. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nnnopatticles. J. Mater. Chem. A 2020, 8, 24536–24542.

    Article  CAS  Google Scholar 

  7. Li, H.; Liu, F.; Fan, B.; Ai, D.; Peng, Z.; Wang, Q. Nanostructured ferroelectric-polymer composites for capacitive energy storage. Small Methods 2018, 2, 1700399.

    Article  Google Scholar 

  8. Dang, Z.; Yuan, J.; Zha, J.; Zhou, T.; Li, S.; Hu, G. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 2012, 57, 660–723.

    Article  CAS  Google Scholar 

  9. Rajib, M.; Martinez, R.; Shuvo, M.; Karim, H.; Delfin, D.; Afrin, S.; Rodriguez, G.; Chintalapalle, R.; Lin, Y. Enhanced energy storage of dielectric nanocomposites at elevated temperatures. Int. J. Appl. Ceram. Technol. 2016, 13, 125–132.

    Article  CAS  Google Scholar 

  10. Sarlioglu, B.; Morris, C. T. More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrification 2015, 1, 54–64.

    Article  Google Scholar 

  11. Tan, D.; Zhang, L.; Chen, Q.; Irwin, P. High-temperature capacitor polymer films. J. Electron. Mater. 2014, 43, 4569–4575.

    Article  ADS  CAS  Google Scholar 

  12. Dong, J.; Hu, R.; Xu, X.; Chen, J.; Niu, Y.; Wang, F.; Hao, J.; Wu, K.; Wang, Q.; Wang, H. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 2021, 31, 2102644.

    Article  CAS  Google Scholar 

  13. Wang, P.; Yao, L.; Pan, Z.; Shi, S.; Yu, J.; Zhou, Y.; Liu, Y.; Liu, J.; Chi, Q.; Zhai, J.; Wang, Q. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 2021, 33, 2103338.

    Article  CAS  Google Scholar 

  14. Sun, B.; Hu, P.; Ji, X.; Fan, M.; Zhou, L.; Guo, M.; He, S.; Shen, Y. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 2022, 18, 2202421.

    Article  CAS  Google Scholar 

  15. Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Su, J.; Shi, Z.; Sun, S. High- temperature flexible nanocomposites with ultrahigh energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155.

    Article  CAS  Google Scholar 

  16. Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S.; Zhang, G.; Li, H. U.; Lagodkine, E.; Haque, A.; Chen, L.; Jackson, T. N.; Wang, Q. Correction: Corrigendum: Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Li, H.; Ren, L.; Ai, D.; Han, Z.; Liu, Y.; Yao, B.; Wang, Q. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. InfoMat. 2020, 2, 389–400.

    Article  CAS  Google Scholar 

  18. Liu, F.; Li, Q.; Li, Z.; Liu, Y.; Dong, L.; Xiong, C.; Wang, Q. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos. Sci. Technol. 2017, 142, 139–144.

    Article  CAS  Google Scholar 

  19. Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881.

    Article  CAS  Google Scholar 

  20. Chen, C.; Xie, Y.; Liu, J.; Li, J.; Wei, X.; Zhang, Z. Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO2 passivation layer: preparation, performance and simulation. Compos. Sci. Technol. 2020, 188, 107968.

    Article  CAS  Google Scholar 

  21. Zheng, W.; Ren, L.; Zhao, X.; Li, H.; Xie, Z.; Li, Y.; Wang, C.; Yu, L.; Yang, L.; Liao, R. Tuning interfacial relaxations in P(VDF-HFP) with Al2O3@ZrO2 core- shell nanofillers for enhanced dielectric and energy storage performance. Compos. Sci. Technol. 2022, 222, 109379.

    Article  CAS  Google Scholar 

  22. Ren, L.; Li, H.; Xie, Z.; Ai, D.; Zhou, Y.; Liu, Y.; Zhang, S.; Yang, L.; Zhao, X.; Peng, Z.; Liao, R.; Wang, Q. High- temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers. Adv. Energy Mater. 2021, 11, 2101297.

    Article  CAS  Google Scholar 

  23. Zhou, Y.; Yuan, C.; Wang, S.; Zhu, Y.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J.; Li, Q. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Stor. Mater. 2020, 28, 255–263.

    Google Scholar 

  24. Thakur, Y.; Zhang, T.; Yang, T.; Bernholc, J.; Chen, L. Q.; Runt, J.; Zhang, Q. M. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanocaale 2017, 9, 0992–10997.

    Google Scholar 

  25. Zhou, Y.; Wang, Q. Advanced polymer dielectrics for high temperature capacitive energy storage. J. Appl. Phys. 2020, 127, 240902.

    Article  ADS  Google Scholar 

  26. Chen, H.; Pan, Z.; Wang, W.; Chen, Y.; Xing, S.; Cheng, Y.; Ding, X.; Liu, J.; Zhai, J.; Yu, J. Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106266.

    Article  CAS  Google Scholar 

  27. Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391.

    Article  ADS  CAS  Google Scholar 

  28. Nakonieczny, D. S.; Kern, F.; Dufner, L.; Dubiel, A.; Antonowicz, M.; Matus, K. Effect of calcination temperature on the phase composition, morphology, and thermal properties of ZrO2 and Al2O3 modified with APTES (3-aminopropyltriethoxysilane). Materials 2021, 14, 6651.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, T.; Li, J.; Niu, F.; Zhong, A.; Liu, J.; Liu, W.; Shan, L.; Zhang, G.; Sun, R.; Wong, C. Low- temperature curable and low-dielectric polyimide nanocomposites using aminoquinoline-functionalized graphene oxide nanosheets. Compos. B Eng. 2022, 228, 109412.

    Article  CAS  Google Scholar 

  30. Dai, W.; Yu, J.; Wang, Y.; Song, Y.; Alam, F. E.; Nishimura, K.; Lin, C.; Jiang, N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 2015, 3, 4884–4891.

    Article  CAS  Google Scholar 

  31. Li, X.; Tan, D.; Xie, L.; Sun, H.; Sun, S.; Zhong, G.; Ren, P. Effect of surface property of halloysite on the crystallization behavior of PBAT. Appl. Clay Sci. 2018, 157, 218–226.

    Article  CAS  Google Scholar 

  32. Yang, C.; Xie, X.; Lu, Y.; Qi, X.; Lei, Y.; Yang, J.; Wang, Y. Improving the performance of dielectric nanocomposites by utilizing highly conductive rigid core and extremely low loss shell. J. Phys. Chem. C 2020, 124, 12883–12896.

    Article  CAS  Google Scholar 

  33. Ren, L.; Yang, L.; Zhang, S.; Li, H.; Zhou, Y.; Ai, D.; Xie, Z.; Zhao, X.; Peng, Z.; Liao, R.; Wang, Q. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos. Sci. Technol. 2021, 201, 108528.

    Article  CAS  Google Scholar 

  34. Hu, P.; Sun, W.; Fan, M.; Qian, J.; Jiang, J.; Dan, Z.; Lin, Y.; Nan, C.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750.

    Article  ADS  CAS  Google Scholar 

  35. Cheng, S.; Zhou, Y.; Hu, J.; He, J.; Li, Q. Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 498–503.

    Article  CAS  Google Scholar 

  36. Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J.; Wang, Q. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018, 30, 1805672.

    Article  Google Scholar 

  37. Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M.; Wang, J.; Wang, Y.; Wang, B.; Liu, F.; Chen, L.; Alem, N.; Wang, Q. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864.

    Article  Google Scholar 

  38. Sun, W.; Lu, X.; Jiang, J.; Zhang, X.; Hu, P.; Li, M.; Lin, Y.; Nan, C.; Shen, Y. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 2017, 121, 244101.

    Article  ADS  Google Scholar 

  39. Dong, J.; Hu, R.; Niu, Y.; Sun, L.; Li, L.; Li, S.; Pan, D.; Xu, X.; Gong, R.; Cheng, J.; Pan, Z.; Wang, Q.; Wang, H. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/mesoscopic interface region. Nano Energy 2022, 99, 107314.

    Article  CAS  Google Scholar 

  40. Liu, J.; Li, X.; Ma, S.; Zhang, J.; Jiang, Z.; Zhang, Y. Enhanced high-temperature dielectric properties of poly(aryl ether sulfone)/BaTiO3 nanocomposites via constructing chemical crosslinked networks. Macromol. Rapid Commun. 2020, 41, 2000012.

    Article  CAS  Google Scholar 

  41. Wang, Y.; Li, Z.; Wu, C.; Cao, Y. High- temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chem. Eng. J. 2020, 401, 126093.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Sichuan Science and Technology Program (No. 2022ZHCG0122), the NSAF project (No. U2230120), Youth Science and Technology Innovation Team of Sichuan Province of Functional Polymer Composites (No. 2021JDTD0009), the Key Researched Development Program of Sichuan Province (No. 2022YFG0271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Hui Yang or Yong Wang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supporting Information

10118_2024_3068_MOESM1_ESM.pdf

Significantly Enhanced Energy Storage Performances of PEI-based Composites Utilizing Surface Functionalized ZrO2 Nanoparticles for High-Temperature Application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QQ., Lin, QH., Qi, XD. et al. Significantly Enhanced Energy Storage Performances of PEI-based Composites Utilizing Surface Functionalized ZrO2 Nanoparticles for High-Temperature Application. Chin J Polym Sci 42, 322–332 (2024). https://doi.org/10.1007/s10118-024-3068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3068-x

Keywords

Navigation