Skip to main content
Log in

Critical Role of Ethylene-Propylene Block Copolymer in Impact Polypropylene Copolymer

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Ethylene-propylene block copolymer (EbP) is a vital component in impact polypropylene copolymer (IPC), yet its distribution in the multiphase composite material and how it influences the phase structure and the mechanical properties are not well understood. In this work, four IPCs were investigated by atomic force microscopy-infrared (AFM-IR) to assess the phase compositions in situ, based on which in conjunction with the chain microstructure information obtained ex situ the distributions of the copolymer components were derived for each alloy. For the IPCs whose EbP comprises long P and long E segments, the EbP fraction was found to phase separate from the rubber and the PP matrix to form the cores of the disperse particles with the E-P segmented copolymer (EsP). In contrast, in the IPC with EbP composed of long P and short E segments, the EbP fraction formed an outer shell for the rubber particles with the cores comprising the EsP alone, and this IPC, containing a lower E comonomer content than its counterpart, exhibited both better impact resistance and higher flexural modulus. These results clarify how the chain structure of EbP governs the phase morphology in IPC, which in turn impacts the properties of the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecchin, G.; Marchetti, E.; Baruzzi, G. On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems. Macromol. Chem. Phys. 2001, 202, 1987–1994.

    Article  CAS  Google Scholar 

  2. Galli, P.; Vecellio, G. Polyolefins: the most promising large-volume materials for the 21st century. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 396–415.

    Article  CAS  ADS  Google Scholar 

  3. Tong, C. Y.; Lan, Y.; Chen, Y.; Chen, Y.; Yang, D. C.; Yang, X. N. The functions of crystallizable ethylene-propylene copolymers in the formation of multiple phase morphology of high impact polypropylene. J. Appl. Polym. Sci. 2012, 123, 1302–1309.

    Article  CAS  Google Scholar 

  4. Tan, H. S.; Li, L.; Chen, Z. N.; Song, Y. H.; Zheng, Q. Phase morphology and impact toughness of impact polypropylene copolymer. Polymer 2005, 46, 3522–3527.

    Article  CAS  Google Scholar 

  5. Xu, J. T.; Feng, L. X.; Yang, S. L.; Wu, Y. N.; Yang, Y. Q.; Kong, X. M. Separation and identification of ethylene-propylene block copolymer. Polymer 1997, 38, 4381–4385.

    Article  CAS  Google Scholar 

  6. Gahleitner, M.; Tranninger, C.; Doshev, P. Herorpphacic copolymers of polypropylene: development, design principles, and future challenges. J. Appl. Polym. Sci. 2013, 130, 3028–3037.

    Article  CAS  Google Scholar 

  7. Chen, F.; Qiu, B.; Shangguan, Y.; Song, Y.; Zheng, Q. Correlation between impact properties and phase structure in impact polypropylene copolymer. Mater. Design 2015, 69, 56–63.

    Article  CAS  Google Scholar 

  8. Kim, G. M.; Michler, G. H. Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 1998, 39, 5689–5697.

    Article  CAS  Google Scholar 

  9. Liu, X.; Guo, M.; Wei, W. Stress-whitening of high-impact poly(propylene): characterization and analysis. Macromol. Symp. 2012, 312, 130–138.

    Article  CAS  Google Scholar 

  10. Li, F.; Gao, Y.; Zhang, Y.; Jiang, W. Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with core-shell rubber modifier. Polymer 2020, 191, 122237.

    Article  Google Scholar 

  11. Chen, F.; Shangguan, Y.; Jiang, Y.; Qiu, B.; Luo, G.; Zheng, Q. Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core-shell structure. Polymer 2015, 65, 81–92.

    Article  Google Scholar 

  12. Li, R.; Zhang, X.; Zhao, Y.; Hu, X.; Zhao, X.; Wang, D. New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: Compositional and morphological influence on mechanical properties. Polymer 2009, 50, 5124–5133.

    Article  CAS  Google Scholar 

  13. Cai, H. J.; Luo, X. L.; Ma, D. Z.; Wang, J. M.; Tan, H. S. Structure and properties of impact copolymer polypropylene. I. Chain structure. J. Appl. Polym. Sci. 1999, 71, 93–101.

    Article  CAS  Google Scholar 

  14. Cheruthazhekatt, S.; Pijpers, T. F. J.; Harding, G. W.; Mathot, V. B. F.; Pasch, H. Multidimensional analysis of the complex composition of impact polypropylene copolymers: combination of TREF, SEC-FTIR-HPer DSC, and high temperature 2D-LC. Macromolecules 2012, 45, 2025–2034.

    Article  CAS  ADS  Google Scholar 

  15. Fernandez, A.; Teresa Exposito, M.; Pena, B.; Berger, R.; Shu, J.; Graf, R.; Spiess, H. W.; Garcia-Munoz, R. A. Molecular structure and local dynamic in impact polypropylene copolymers studied by preparative TREF, solid state NMR spectroscopy, and SFM microscopy. Polymer 2015, 61, 87–98.

    Article  CAS  Google Scholar 

  16. Xue, Y.; Fan, Y.; Bo, S.; Ji, X. Characterization of the microstructure of impact polypropylene alloys by preparative temperature rising elution fractionation. Eur. Polym. J. 2011, 47, 1646–1653.

    Article  CAS  Google Scholar 

  17. Zhang, Y. Q.; Fan, Z. Q.; Feng, L. X. Influences of copolymerization conditions on the structure and properties of isotactic polypropylene/ethylene-propylene random copolymerin situ blends. J. Appl. Polym. Sci. 2002, 84, 445–453.

    Article  CAS  Google Scholar 

  18. Zhu, H.; Han, C. C.; Wang, D. Phase structure and crystallization behavior of polypropylene in-reactor alloys: insights from both inter- and intramolecular compositional heterogeneity. Macromolecules 2008, 41, 826–833.

    Article  CAS  ADS  Google Scholar 

  19. Zhang, C.; Shangguan, Y.; Chen, R.; Wu, Y.; Chen, F.; Zheng, Q.; Hu, G. Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer 2010, 51, 4969–4977.

    Article  CAS  Google Scholar 

  20. Chen, Y.; Chen, Y.; Chen, W.; Yang, D. Multilayered core-shell structure of the dispersed phase in high-impact polypropylene. J. Appl. Polym. Sci. 2008, 108, 2379–2385.

    Article  CAS  Google Scholar 

  21. Song, S.; Feng, J.; Wu, P. Relaxation of shear-enhanced crystallization in impact-resistant polypropylene copolymer: insight from morphological evolution upon thermal treatment. Polymer 2010, 51, 5267–5275.

    Article  CAS  Google Scholar 

  22. Qiu, B. W.; Chen, F.; Shangguan, Y. G.; Lin, Y.; Zheng, Q. Effects of composition on microstructure and crystallization behavior for impact polypropylene copolymer investigated by restructuring the complex core-shell dispersed particles in ternary blends. Chinese J. Polym. Sci. 2015, 33, 95–108.

    Article  CAS  Google Scholar 

  23. Rungswang, W.; Saendee, P.; Thitisuk, B.; Pathaweeisariyakul, T.; Cheevasrirungruang, W. Role of crystalline ethylene-propylene copolymer on mechanical properties of impact polypropylene copolymer. J. Appl. Polym. Sci. 2013, 128, 3131–3140.

    Article  CAS  Google Scholar 

  24. Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.

    Article  ADS  Google Scholar 

  25. Dazzi, A.; Prater, C. B. AFM- IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173.

    Article  CAS  PubMed  Google Scholar 

  26. Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005, 30, 2388–2390.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Tang, F.; Bao, P.; Su, Z. Analysis of nanodomain composition in high-impact polypropylene by atomic force microscopy-infrared. Anal. Chem. 2016, 88, 4926–4930.

    Article  CAS  PubMed  Google Scholar 

  28. Tang, F.; Bao, P.; Roy, A.; Wang, Y.; Su, Z. In-situ spectroscopic and thermal analyses of phase domains in high-impact polypropylene. Polymer 2018, 142, 155–163.

    Article  CAS  Google Scholar 

  29. Li, C.; Wang, Z.; Liu, W.; Ji, X.; Su, Z. Copolymer distribution in core-shell rubber particles in high-impact polypropylene investigated by atomic force microscopy-infrared. Macromolecules 2020, 53, 2686–2693.

    Article  CAS  ADS  Google Scholar 

  30. Agosti, E.; Zerbi, G.; Ward, I. M. Structure of the skin and core of ultradrawn polyethylene films by vibrational spectroscopy. Polymer 1992, 33, 4219–4229.

    Article  CAS  Google Scholar 

  31. Kissin, Y. V.; Tsvetkova, V. I.; Chirkov, N. M. The stereoregularity of polypropylene from IR and NMR data. Eur. Polym. J. 1972, 8, 529–546.

    Article  CAS  Google Scholar 

  32. Hagemann, H.; Snyder, R. G.; Peacock, A. J.; Mandelkern, L. Quantitative infrared methods for the measurement of crystallinity and its temperature dependence: polyethylene. Macromolecules 2002, 22, 3600–3606.

    Article  ADS  Google Scholar 

  33. Zhu, X.; Yan, D.; Yao, H.; Zhu, P. In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly(propylene). Macromol. Rapid Commun. 2000, 21, 354–357.

    Article  CAS  Google Scholar 

  34. Chen, J. H.; Zhong, J. C.; Cai, Y. H.; Su, W. B.; Yang, Y. B. Morphology and thermal properties in the binary blends of poly(propylene-co-ethylene) copolymer and isotactic polypropylene with polyethylene. Polymer 2007, 48, 2946–2957.

    Article  CAS  Google Scholar 

  35. Li, R.; Ji, X. L. The relationship between ethylene content and properties of high impact polypropylene. Manuscript in preparation.

  36. Liu, W.; Zhang, J.; Hong, M.; Li, P.; Xue, Y.; Chen, Q.; Ji, X. Chain microstructure of two highly impact polypropylene resins with good balance between stiffness and toughness. Polymer 2020, 188, 122146.

    Article  CAS  Google Scholar 

  37. van der Wal, A.; Verheul, A. J. J.; Gaymans, R. J. Polypropylene-rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer 1999, 40, 6057–6065.

    Article  CAS  Google Scholar 

  38. Kim, S. D.; Choi, Y.; Choi, W.; Choi, C.; Chun, Y. S. Effect of ethylene-propylene copolymer composition on morphology and surface properties of impact poly(propylene) copolymer. Macromol. Symp. 2012, 312, 27–33.

    Article  CAS  Google Scholar 

  39. Rungswang, W.; Jarumaneeroj, C.; Jirasukho, P.; Juabrum, S.; Pakawanit, P.; Soontaranon, S.; Rugmai, S. Tiree-resoledd SAXS/WAXD under tensile deformation: role of segmental ethylene-propylene copolymers in impact-resistant polypropylene copolymers. ACS Appl. Polym. Mater. 2021, 3, 6394–6406.

    Article  CAS  Google Scholar 

  40. Santonja-Blasco, L.; Rungswang, W.; Alamo, R. G. Influence of chain microstructure on liquid-liquid phase structure and crystallization of dual reactor Ziegler-Natta made impact propylene-ethylene copolymers. Ind. Eng. Chem. Res. 2017, 56, 3270–3282.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52073277) and the Science and Technology Department of Fujian Province (No. 2020HZ06019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Su.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YH., Zhang, N., Bao, W. et al. Critical Role of Ethylene-Propylene Block Copolymer in Impact Polypropylene Copolymer. Chin J Polym Sci 42, 344–351 (2024). https://doi.org/10.1007/s10118-023-3058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3058-4

Keywords

Navigation