Skip to main content
Log in

Rheological Behaviors of Polymers with Nanoparticles Tethered at Each End

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The polymer with nanoparticles tethered at each end is a unique model for unraveling the effect of chain ends on the polymer dynamics. We investigated the rheological behavior of this kind of polymer by using nonequilibrium molecular dynamics simulation. The effect of polymer lengths and nanoparticle radii on the complex moduli and viscosity was examined. The dependence of complex moduli on the frequency becomes less pronounced as the polymer is short or the nanoparticle is large. The shear thinning behavior was revealed for these systems, and the scaling exponent of complex viscosity with respect to the frequency was found to change from −1/2 to −3/4 as the polymer shortens or the nanoparticle enlarges. The rheological behavior was further explained by analyzing the mean square distance of nanoparticles. The simulation results were compared with the existing experimental finding, showing an agreement. The work provides information for understanding the chain end effect on polymer rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balazs, A. C.; Emrick, T., Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 2006, 314, 1107–1110.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kumar, S. K., Benicewicz, B. C., Vaia, R. A., Winey, K. I. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714–731.

    Article  ADS  CAS  Google Scholar 

  3. Shukla, P., Saxena, P. Polymer nanocomposites in sensor applications: a review on present trends and future scope. Chinese J. Polym. Sci. 2021, 39, 665–691.

    Article  CAS  Google Scholar 

  4. Yan, M., Zhang, Y. T., Wang, X. H. Nanoparticle-filled ABC star triblock copolymers: a dissipative particle dynamics study. Chinese J. Polym. Sci. 2023, 41, 1462–1476.

    Article  CAS  Google Scholar 

  5. Lungova, M., Krutyeva, M., Pyckhout-Hintzen, W., Wischnewski, A., Monkenbusch, M., Allgaier, J., Ohl, M., Sharp, M., Richter, D. Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys. Rev. Lett. 2016, 117, No. 147803.

    Google Scholar 

  6. Wang, L., Ma, J., Hong, W., Zhang, H., Lin, J. Nanoscale diffusion of polymer-grafted nanoparticles in entangled polymer melts. Macromolecules 2020, 53, 8393–8399.

    Article  ADS  CAS  Google Scholar 

  7. Hu, S. N., Lin, Y., Wu, G. Z. Nanoparticle dispersion and glass transition behavior of polyimide-grafted silica nanocomposites. Chinese J. Polym. Sci. 2020, 38, 100–108.

    Article  CAS  Google Scholar 

  8. Medidhi, K. R., Padmanabhan, V. Diffusion of polymer-grafted nanoparticles in a homopolymer matrix. J. Chem. Phys. 2019, 150, 044905.

    Article  ADS  PubMed  Google Scholar 

  9. Luo, Y. L., Duan, X. H., Li, B., Chen, X. L., Gao, Y. Y., Zhang, L. Q. Tuning the electrically conductive network of grafted nanoparticles in polymer nanocomposites by the shear field. Chinese J. Polym. Sci. 2020, 38, 1426–1434.

    Article  CAS  Google Scholar 

  10. Ge, T., Rubinstein, M. Mobility of polymer-tethered nanoparticles in unentangled polymer melts. Macromolecules 2019, 52, 1536–1545.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoshino, T., Murakami, D., Tanaka, Y., Takata, M., Jinnai, H., Takahara, A. Dynamical crossover between hyperdiffusion and subdiffusion of polymer-grafted nanoparticles in a polymer matrix. Phys. Rev. E 2013, 88, 032602.

    Article  ADS  Google Scholar 

  12. Liu, S., Senses, E., Jiao, Y., Narayanan, S., Akcora, P. Structure and entanglement factors on dynamics of polymer-grafted nanoparticles. ACS Macro Lett. 2016, 5, 569–573.

    Article  CAS  PubMed  Google Scholar 

  13. Lin, C., Griffin, P. J., Chao, H., Hore, M. J. A., Ohno, K., Clarke, N., Riggleman, R. A., Winey, K. I., Composto, R. J. Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. J. Chem. Phys. 2017, 146, 203332.

    Article  ADS  PubMed  Google Scholar 

  14. Ge, T. Scaling Perspective on dynamics of nanoparticles in polymers: length- and time-scale dependent nanoparticle-polymer coupling. Macromolecules 2023, 56, 3809–3837.

    Article  ADS  CAS  Google Scholar 

  15. Zhang, X., Wei, W., Xiong, H. Hierarchical dynamics of nonsticky molecular nanoparticle-tethered polymers: end and topology effect. Macromolecules 2022, 55, 3637–3649.

    Article  ADS  CAS  Google Scholar 

  16. Doi, M., Edwards, S. F. In The Theory of polymer dynamics, Oxford University Press: New York, 1988.

    Google Scholar 

  17. Rubinstein, M., Colby, R. H. In Polymer Physics, Oxford University Press: New York, 2003.

    Book  Google Scholar 

  18. Fetters, L. J., Graessley, W. W., Hadjichristidis, N., Kiss, A. D., Pearson, D. S., Younghouse, L. B. Association behavior of endfunctionalized polymers. 2. Melt rheology of polyisoprenes with carboxylate, amine, and zwitterion end groups. Macromolecules 1988, 21, 1644–1653.

    Article  ADS  CAS  Google Scholar 

  19. Xing, K., Tress, M., Cao, P. F., Fan, F., Cheng, S., Saito, T., Sokolov, A. P. The role of chain-end association lifetime in segmental and chain dynamics of telechelic polymers. Macromolecules 2018, 51, 8561–8573.

    Article  ADS  CAS  Google Scholar 

  20. Ge, T., Rubinstein, M., Grest, G. S. Effects of tethered polymers on dynamics of nanoparticles in unentangled polymer melts. Macromolecules 2020, 53, 6898–6906.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lund, R., Plaza-García, S., Alegría, A., Colmenero, J., Janoski, J., Chowdhury, S. R., Quirk, R. P. Polymer Dynamics of well-defined, chain-end-functionalized polystyrenes by dielectric spectroscopy. Macromolecules 2009, 42, 8875–8881.

    Article  ADS  CAS  Google Scholar 

  22. Miwa, Y., Yamamoto, K., Sakaguchi, M., Sakai, M., Makita, S., Shimada, S. Direct detection of high mobility around chain ends of poly(methyl methacrylate) by the spin-labeling. Macromolecules 2005, 38, 832–838.

    Article  ADS  CAS  Google Scholar 

  23. Wang, W., Wang, L. Molecular dynamics simulation of polymers with nanoparticles tethered at two ends. Acta Polymerica Sinica (in Chinese), 2023, DOI: 10.11777/j.issn1000-3304.2023.23154.

    Google Scholar 

  24. Evans, D. J. Rheology and thermodynamics from nonequilibrium molecular dynamics. Int. J. Thermophys. 1986, 7, 573–584.

    Article  ADS  CAS  Google Scholar 

  25. Li, Z., Djohari, H., Dormidontova, E. E. Molecular dynamics simulations of supramolecular polymer rheology. J. Chem. Phys. 2010, 133, 184904.

    Article  ADS  PubMed  Google Scholar 

  26. Duquesnoy, M., Lombardo, T., Caro, F.; Haudiquez, F.; Ngandjong, A. C.; Xu, J.; Oularbi, H.; Franco, A. A. Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics. npj Comput. Mater. 2022, 8, No.161.

  27. Nikoubashman, A., Howard, M. P. Equilibrium dynamics and shear rheology of semiflexible polymers in solution. Macromolecules 2017, 50, 8279–8289.

    Article  ADS  CAS  Google Scholar 

  28. Zhu, H., Zhang, S., Li, X., Ma, D., Sun, X., Wang, Z. H., Yan, Y., Xu, J., Yang, C. Molecular dynamics simulation reveals unique rheological and viscosity-temperature properties of karamay heavy crude oil. Energy Fuels 2021, 35, 7956–7966.

    Article  CAS  Google Scholar 

  29. Hong, W., Lin, J., Tian, X., Wang, L. Distinct viscoelasticity of hierarchical nanostructures self-assembled from multiblock copolymers. Macromolecules 2020, 53, 10955–10963.

    Article  ADS  CAS  Google Scholar 

  30. Hong, W., Lin, J., Tian, X., Wang, L. Viscoelasticity of nanosheetfilled polymer composites: three regimes in the enhancement of moduli. J. Phys. Chem. B 2020, 124, 6437–6447.

    Article  CAS  PubMed  Google Scholar 

  31. Peng, Y., Yue, T., Li, S., Gao, K., Wang, Y., Li, Z., Ye, X., Zhang, L., Liu, J. Rheological and structural properties of associated polymer networks studied via non-equilibrium molecular dynamics simulation. Mol. Syst. Des. Eng. 2021, 6, 461–475.

    Article  CAS  Google Scholar 

  32. LAMMPS Molecular Dynamics Simulator. https://lammps.sandia.gov/. (Accessed August 1 2023).

  33. Lees, A., Edwards, S. The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys. 1972, 5, 1921.

    Article  ADS  Google Scholar 

  34. Payne, A. R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 57–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21774032 and 51833003) and Shanghai Scientific and Technological Innovation Projects (No. 22ZR1417500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Ping Lin or Li-Quan Wang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SQ., Wang, WQ., Lin, JP. et al. Rheological Behaviors of Polymers with Nanoparticles Tethered at Each End. Chin J Polym Sci 42, 400–406 (2024). https://doi.org/10.1007/s10118-023-3052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3052-x

Keywords

Navigation