Skip to main content
Log in

High-Performance Recyclable Furan-based Epoxy Resin and Its Carbon Fiber Composites with Dense Hydrogen Bonding

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society. Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol (FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin (FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory (DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution. This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using musselinspired iron-catechol complexes. Science 2017, 358, 502–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. de Kruijff, G. H. M.; Goschler, T.; Beiser, N.; Stenglein, A.; Türk, O. M.; Waldvogel, S. R. Sustainable access to biobased biphenol epoxy resins by electrochemical dehydrogenative dimerization of eugenol. Green Chem. 2019, 21, 4815–4823.

    Article  CAS  Google Scholar 

  3. Tian, Y.; Wang, Q.; Shen, L.; Cui, Z.; Kou, L.; Cheng, J.; Zhang, J. A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chem. Eng. J. 2020, 383, 123124.

    Article  CAS  Google Scholar 

  4. Yu, S.; Zhang, G.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. Effects of dynamic covalent bond multiplicity on the performance of vitrimeric elastomers. J. Mater. Chem. A 2020, 8, 20503–20512.

    Article  CAS  Google Scholar 

  5. Sun, Y.; Wang, M.; Wang, Z.; Mao, Y.; Jin, L.; Zhang, K.; Xia, Y.; Gao, H. Amine-cured glycidyl esters as dual dynamic epoxy vitrimers. Macromolecules 2022, 55, 523–534.

    Article  CAS  Google Scholar 

  6. Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 2017, 29, 1606100.

    Article  Google Scholar 

  7. Yang, Y.; Xu, Y.; Ji, Y.; Wei, Y. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2021, 120, 100710.

    Article  CAS  Google Scholar 

  8. Zhang, J.; Gong, Z.; Wu, C.; Li, T.; Tang, Y.; Wu, J.; Jiang, C.; Miao, M.; Zhang, D. Itaconic acid-based hyperbranched polymer toughened epoxy resins with rapid stress relaxation, superb solvent resistance and closed-loop recyclability. Green Chem. 2022, 24, 6900–6911.

    Article  CAS  Google Scholar 

  9. Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J. 2020, 385, 123820.

    Article  CAS  Google Scholar 

  10. Trinh, T. E.; Ku, K.; Yeo, H. Reprocessable and chemically recyclable hard vitrimers based on liquid-crystalline epoxides. Adv. Mater. 2023, 35, e2209912.

    Article  PubMed  Google Scholar 

  11. Memon, H.; Liu, H.; Rashid, M. A.; Chen, L.; Jiang, Q.; Zhang, L.; Wei, Y.; Liu, W.; Qiu, Y. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 2020, 53, 621–630.

    Article  CAS  Google Scholar 

  12. Thi-Nguyet, T.; Di Mauro, C.; Graillot, A.; Mija, A. Chemical reactivity and the influence of initiators on the epoxidized vegetable oil/dicarboxylic acid system. Macromolecules 2020, 53, 2526–2538.

    Article  Google Scholar 

  13. Si, H.; Zhou, L.; Wu, Y.; Song, L.; Kang, M.; Zhao, X.; Chen, M. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos. Part B: Eng. 2020, 199, 108278.

    Article  CAS  Google Scholar 

  14. Xu, Z.; Liang, Y.; Ma, X.; Chen, S.; Yu, C.; Wang, Y.; Zhang, D.; Miao, M. Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nat. Sustain. 2019, 3, 29–34.

    Article  Google Scholar 

  15. Wang, B.; Ma, S.; Li, Q.; Zhang, H.; Liu, J.; Wang, R.; Chen, Z.; Xu, X.; Wang, S.; Lu, N.; Liu, Y.; Yan, S.; Zhu, J. Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chem. 2020, 22, 1275–1290.

    Article  CAS  Google Scholar 

  16. Warlin, N.; Garcia Gonzalez, M. N.; Mankar, S.; Valsange, N. G.; Sayed, M.; Pyo, S. H.; Rehnberg, N.; Lundmark, S.; Hatti-Kaul, R.; Jannasch, P.; Zhang, B. A rigid spirocyclic diol from fructose-based 5-hydroxymethylfurfural: synthesis, life-cycle assessment, and polymerization for renewable polyesters and poly(urethane-urea)s. Green Chem. 2019, 21, 6667–6684.

    Article  CAS  Google Scholar 

  17. Chen, Y.; Tang, Z.; Liu, Y.; Wu, S.; Guo, B. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links. Macromolecules 2019, 52, 3805–3812.

    Article  CAS  Google Scholar 

  18. Röttger, M.; Domenech, T.; van der Weegen, R.; Nicolaÿ, A. B. R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65.

    Article  PubMed  Google Scholar 

  19. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  PubMed  CAS  Google Scholar 

  20. Pei, Z.; Yang, Y.; Chen, Q.; Wei, Y.; Ji, Y. Regional shape control of strategically assembled multishape memory vitrimers. Adv. Mater. 2016, 28, 156–160.

    Article  PubMed  CAS  Google Scholar 

  21. Kawai, K.; Ikeda, K.; Sato, A.; Kabasawa, A.; Kojima, M.; Kokado, K.; Kakugo, A.; Sada, K.; Yoshino, T.; Matsunaga, S. 1,2-Disubstituted 1,2-dihydro-1,2,4,5-tetrazine-3,6-dione as a dynamic covalent bonding unit at room temperature. J. Am. Chem. Soc. 2022, 144, 1370–1379.

    Article  PubMed  CAS  Google Scholar 

  22. Lu, C.; Liu, Y.; Wang, C.; Yong, Q.; Wang, J.; Chu, F. An integrated strategy to fabricate bio-based dual-cure and toughened epoxy thermosets with photothermal conversion property. Chem. Eng. J. 2022, 433, 134582.

    Article  CAS  Google Scholar 

  23. Tretbar, C. A.; Neal, J. A.; Guan, Z. B. Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc. 2019, 141, 16595–16599.

    Article  PubMed  CAS  Google Scholar 

  24. Gao, S.; Liu, Y.; Feng, S.; Lu, Z. Reprocessable and degradable thermoset with high Tg cross-linked via Si-O-Ph bonds. J. Mater. Chem. A 2019, 7, 17498–17504.

    Article  CAS  Google Scholar 

  25. Ji, S.; Cao, W.; Yu, Y.; Xu, H. Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis. Angew. Chem. Int. Ed. 2014, 126, 6899–6903.

    Article  Google Scholar 

  26. Liu, X.; Song, X.; Chen, B.; Liu, J.; Feng, Z.; Zhang, W.; Zeng, J.; Liang, L. Self-healing and shape-memory epoxy thermosets based on dynamic diselenide bonds. React. Funct. Polym. 2022, 170, 105121.

    Article  CAS  Google Scholar 

  27. Yang, L.; Li, Y.; Du, M.; He, Y.; Lan, Y.; Yin, Q.; Zhu, F.; Chang, G. Force-reversible and energetic indole-Mg-indole cation-π interaction for designing toughened and multifunctional high-performance thermosets. Adv. Funct. Mater. 2021, 32, 2111021.

    Article  Google Scholar 

  28. Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 2019, 21, 1484–1497.

    Article  CAS  Google Scholar 

  29. Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules 2018, 51, 9816–9824.

    Article  CAS  Google Scholar 

  30. Memon, H.; Wei, Y.; Zhu, C. Recyclable and reformable epoxy resins based on dynamic covalent bonds Present, past, and future. Polym. Test. 2022, 105, 107420.

    Article  CAS  Google Scholar 

  31. Liu, T.; Hao, C.; Zhang, S.; Yang, X. N.; Wang, L. W.; Han, J. R.; Li, Y. Z.; Xin, J. N.; Zhang, J. W. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry. Macromolecules 2018, 51, 5577–5585.

    Article  CAS  Google Scholar 

  32. Xu, X.; Ma, S.; Wu, J.; Yang, J.; Wang, B.; Wang, S.; Li, Q.; Feng, J.; You, S.; Zhu, J. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. J. Mater. Chem. A 2019, 7, 15420–15431.

    Article  CAS  Google Scholar 

  33. Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets. ACS Sustainable Chem. Eng. 2018, 6, 11008–11017.

    Article  CAS  Google Scholar 

  34. Wan, J.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Kalali, E. N.; Wang, X.; Wang, D.-Y. A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: synthesis, curing kinetics and structure–property relationship. Chem. Eng. J. 2016, 284, 1080–1093.

    Article  CAS  Google Scholar 

  35. Qi, Y.; Weng, Z. H.; Zhang, K. W.; Wang, J. Y.; Zhang, S. H.; Liu, C.; Jian, X. G. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy. Chem. Eng. J. 2020, 387, 124115.

    Article  CAS  Google Scholar 

  36. Cao, Q.; Li, J.; Qi, Y.; Zhang, S.; Wang, J.; Wei, Z.; Pang, H.; Jian, X.; Weng, Z. Engineering double load-sharing network in thermosetting: much more than just toughening. Macromolecules 2022, 21, 9502–9512.

    Article  Google Scholar 

  37. Nabipour, H.; Wang, X.; Song, L.; Hu, Y. A high performance fully bio-based epoxy thermoset from a syringaldehyde-derived epoxy monomer cured by furan-derived amine. Green Chem. 2021, 23, 501–510.

    Article  CAS  Google Scholar 

  38. Zhong, L.; Hao, Y.; Zhang, J.; Wei, F.; Li, T.; Miao, M.; Zhang, D. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules 2022, 55, 595–607.

    Article  CAS  Google Scholar 

  39. Pansumdaeng, J.; Kuntharin, S.; Harnchana, V.; Supanchaiyamat, N. Fully bio-based epoxidized soybean oil thermosets for high performance triboelectric nanogenerators. Green Chem. 2020, 22, 6912–6921.

    Article  CAS  Google Scholar 

  40. Qi, Y.; Weng, Z.; Kou, Y.; Song, L.; Li, J.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem. Eng. J. 2021, 406, 126881.

    Article  CAS  Google Scholar 

  41. Cao, Q.; Weng, Z.; Qi, Y.; Li, J.; Liu, W.; Liu, C.; Zhang, S.; Wei, Z.; Chen, Y.; Jian, X. Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin. Chin. Chem. Lett. 2022, 33, 2195–2199.

    Article  CAS  Google Scholar 

  42. Qi, Y.; Weng, Z.; Kou, Y.; Li, J.; Cao, Q.; Wang, J.; Zhang, S.; Jian, X. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B: Eng. 2021, 214, 108749.

    Article  CAS  Google Scholar 

  43. Lin, J.; Xu, P.; Wang, L.; Sun, Y.; Ge, X.; Li, G.; Yang, X. Multi-scale interphase construction of self-assembly naphthalenediimide/multi-wall carbon nanotube and enhanced interfacial properties of high-modulus carbon fiber composites. Composi. Sci. Technol. 2019, 184, 107855.

    Article  CAS  Google Scholar 

  44. Chappuis, S.; Edera, P.; Cloitre, M.; Tournilhac, F. Enriching an exchangeable network with one of its components: the key to high-Tg epoxy vitrimers with accelerated relaxation. Macromolecules 2022, 55, 6982–6991.

    Article  CAS  Google Scholar 

  45. He, J.; Li, L.; Zhou, J.; Tian, J.; Chen, Y.; Zou, H.; Liang, M. Ultra-high modulus epoxy resin reinforced by intensive hydrogen bond network: from design, synthesis, mechanism to applications. Compos. Sci. Technol. 2023, 231, 109815.

    Article  CAS  Google Scholar 

  46. Liu, Y. Y.; Liu, G. L.; Li, Y. D.; Weng, Y.; Zeng, J. B. Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites. ACS Sustainable Chem. Eng. 2021, 9, 4638–4647.

    Article  CAS  Google Scholar 

  47. Liu, Y. Y.; He, J.; Li, Y. D.; Zhao, X. L.; Zeng, J. B. Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite. Compos. Commun. 2020, 22, 100445.

    Article  Google Scholar 

  48. Zhao, X. L.; Liu, Y. Y.; Weng, Y.; Li, Y. D.; Zeng, J. B. Sustainable epoxy vitrimers from epoxidized soybean oil and vanillin. ACS Sustainable Chem. Eng. 2020, 8, 15020–15029.

    Article  CAS  Google Scholar 

  49. Barone, V.; Adamo, C.; Lelj, F. Conformational behavior of gaseous glycine by a density functional approach. J. Chem. Phys. 1995, 102, 364–370.

    Article  CAS  Google Scholar 

  50. Becke; Axel, D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377.

    Article  CAS  Google Scholar 

  51. Becke; Axel, D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  52. Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  53. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  PubMed  CAS  Google Scholar 

  54. Hu, F.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. Synthesis and characterization of thermosetting furan-based epoxy systems. Macromolecules 2014, 47, 3332–3342.

    Article  CAS  Google Scholar 

  55. Marotta, A.; Faggio, N.; Ambrogi, V.; Mija, A.; Gentile, G.; Cerruti, P. Biobased furan-based epoxy/TiO2 nanocomposites for the preparation of coatings with improved chemical resistance. Chem. Eng. J. 2021, 406, 127107.

    Article  CAS  Google Scholar 

  56. Pezzana, L.; Melilli, G.; Guigo, N.; Sbirrazzuoli, N.; Sangermano, M. Cationic UV curing of bioderived epoxy furan-based coatings: tailoring the final properties by in situ formation of hybrid network and addition of monofunctional monomer. ACS Sustainable Chem. Eng. 2021, 9, 17403–17412.

    Article  CAS  Google Scholar 

  57. Guo, H.; Huang, S.; Yang, X.; Wu, J.; Kirk, T. B.; Xu, J.; Xu, A.; Xue, W. Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel-sol transition and drug delivery properties for promoting periodontium regeneration in periodontitis. ACS Appl. Mater. Interfaces 2021, 13, 61638–61652.

    Article  PubMed  CAS  Google Scholar 

  58. Lee, S. H.; Shin, S. R.; Lee, D. S. Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin. Mater. Design 2019, 172, 107774.

    Article  CAS  Google Scholar 

  59. Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 2018, 4, eaaq0508.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Memon, H.; Wei, Y.; Zhu, C. Correlating the thermomechanical properties of a novel bio-based epoxy vitrimer with its crosslink density. Mater. Today Commun. 2021, 29, 102814.

    Article  CAS  Google Scholar 

  61. Sangroniz, L.; Sangroniz, A.; Alegria, A.; Fernandez, M.; Irusta, L.; Müller, A. J.; Etxeberria, A.; Santamaría, A. Effect of hydrogen bonding on the physicochemical and rheological features of chemically modified phenoxy. Polymer 2018, 159, 12–22.

    Article  CAS  Google Scholar 

  62. Coleman, M. M.; Moskala, E. J. FTIR studies of polymer blends containing the poly(hydroxy ether of bisphenol A) and poly(e-caprolactone). Polymer 1983, 24, 251–257.

    Article  CAS  Google Scholar 

  63. Mora, A. S.; Tayouo, R.; Boutevin, B.; David, G.; Caillol, S. A perspective approach on the amine reactivity and the Hydrogen bonds effect on epoxy-amine systems. Eur. Polym. J. 2020, 123, 109460.

    Article  Google Scholar 

  64. Qi, Y.; Wang, J.; Kou, Y.; Pang, H.; Zhang, S.; Li, N.; Liu, C.; Weng, Z.; Jian, X. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat. Commun. 2019, 10, 2107.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tanaka, Y.; Kakiuchi, H. Study of epoxy compounds. Part I. Curing reactions of epoxy resin and acid anhydride with amine and alcohol as catalyst. J. Appl. Polym. Sci. 1963, 7, 1063–1081.

    Article  CAS  Google Scholar 

  66. Liu, Y.; Zhao, J.; Peng, Y.; Luo, J.; Cao, L.; Liu, X. Comparative study on the properties of epoxy derived from aromatic and heteroaromatic compounds: the role of hydrogen bonding. Indust. Eng. Chem. Res. 2020, 59, 1914–1924.

    Article  CAS  Google Scholar 

  67. Ma, X.; Liang, Y.; Xu, Z.; Chen, S.; Cheng, J.; Miao, M.; Zhang, D. The versatility of hyperbranched epoxy resins containing hexahydro-s-triazine on diglycidyl ether of bisphenol-A composites. Compos. Part B: Eng. 2020, 196, 108109.

    Article  CAS  Google Scholar 

  68. di Mauro, C.; Tran, T. N.; Graillot, A.; Mija, A. Enhancing the recyclability of a vegetable oil-based epoxy thermoset through initiator influence. ACS Sustainable Chem. Eng. 2020, 8, 7690–7700.

    Article  CAS  Google Scholar 

  69. Wang, S.; Ma, S.; Xu, C.; Liu, Y.; Dai, J.; Wang, Z.; Liu, X.; Chen, J.; Shen, X.; Wei, J.; Zhu, J. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 2017, 50, 1892–1901.

    Article  CAS  Google Scholar 

  70. Meng, J.; Zeng, Y.; Zhu, G.; Zhang, J.; Chen, P.; Cheng, Y.; Fang, Z.; Guo, K. Sustainable bio-based furan epoxy resin with flame retardancy. Polym. Chem. 2019, 10, 2370–2375.

    Article  CAS  Google Scholar 

  71. Jiang, Y.; Ding, D.; Zhao, S.; Zhu, H.; Kenttamaa, H. I.; Abu-Omar, M. M. Renewable thermoset polymers based on lignin and carbohydrate derived monomers. Green Chem. 2018, 20, 1131–1138.

    Article  CAS  Google Scholar 

  72. Zhang, Z.; Lei, D.; Zhang, C.; Wang, Z.; Jin, Y.; Zhang, W.; Liu, X.; Sun, J. Strong and tough supramolecular covalent adaptable networks with room-temperature closed-loop recyclability. Adv. Mater. 2023, 35, e2208619.

    Article  PubMed  Google Scholar 

  73. Shen, Y.; Xu, N.; Adraro, Y. A.; Wang, B.; Liu, Y.; Yuan, W.; Xu, X.; Huang, Y.; Hu, Z. Imine or secondary amine-derived degradable polyaminal: low-cost matrix resin with high performance. ACS Sustainable Chem. Eng. 2020, 8, 1943–1953.

    Article  CAS  Google Scholar 

  74. Wang, S.; Ma, S. Q.; Li, Q.; Yuan, W. C.; Wang, B. B.; Zhu, J. Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources. Macromolecules 2018, 51, 8001–8012.

    Article  CAS  Google Scholar 

  75. Yu, Q. Q.; Peng, X. H.; Wang, Y. L.; Geng, H. W.; Xu, A. C.; Zhang, X.; Xu, W. L.; Ye, D. Z. Vanillin-based degradable epoxy vitrimers: reprocessability and mechanical properties study. Eur. Polym. J. 2019, 117, 55–63.

    Article  CAS  Google Scholar 

  76. Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules 2016, 49, 6277–6284.

    Article  CAS  Google Scholar 

  77. Ma, S.; Wei, J.; Jia, Z.; Yu, T.; Yuan, W.; Li, Q.; Wang, S.; You, S.; Liu, R.; Zhu, J. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 2019, 7, 1233–1243.

    Article  CAS  Google Scholar 

  78. Belowich, M. E.; Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, Y.; Yang, B.; Zhang, X.; Xu, L.; Tao, L.; Li, S.; Wei, Y. A magnetic self-healing hydrogel. Chem. Commun. 2012, 48, 9305–9307.

    Article  CAS  Google Scholar 

  80. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  PubMed  CAS  Google Scholar 

  81. Lei, Z. Q.; Xie, P.; Rong, M. Z.; Zhang, M. Q. Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J. Mater. Chem. A 2015, 3, 19662–19668.

    Article  CAS  Google Scholar 

  82. Kathan, M.; Kovaricek, P.; Jurissek, C.; Senf, A.; Dallmann, A.; Thunemann, A. F.; Hecht, S. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 2016, 55, 13882–13886.

    Article  CAS  Google Scholar 

  83. Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 2016, 28, 2904–2909.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973118, 22175121, 52003160 and 22001175), Key-Area Research and Development Program of Guangdong Province (Nos. 2019B010941001 and 2019B010929002), the Natural Science Foundation of Guangdong Province (No. 2020A1515010644), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2019ZT08C642), Shenzhen Science and Technology Program (Nos. JCYJ20220818095810022, JSGGZD20220822 095201003 and JCYJ20210324095412035), the start-up fund of Shenzhen University (No. 000002110820), the Guangdong Natural Science Foundation (Nos. 2022A1515011781 and 2021A1515110086), Science and Technology Innovation Commission of Shenzhen, China (Nos. RCBS202007141149 10141 and JCYJ20210324132816039), the Start-up Grant at Harbin Institute of Technology (Shenzhen), China (Nos. HA45001108 and HA11409049) and Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application (No. ZDSYS20220527171407017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Guo, Zhi-Yong Xue or Cai-Zhen Zhu.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CB., Feng, LK., Xie, H. et al. High-Performance Recyclable Furan-based Epoxy Resin and Its Carbon Fiber Composites with Dense Hydrogen Bonding. Chin J Polym Sci 42, 73–86 (2024). https://doi.org/10.1007/s10118-023-3045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3045-9

Keywords

Navigation