Skip to main content
Log in

Thiazoloisoindigo-based Polymer Semiconductors: Synthesis, Structure-Property Relationship, Charge Carrier Polarity, and Field-Effect Transistor Performance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Developing new polymeric semiconductors with excellent device performance is essential for organic electronics. Herein, we synthesized two new thiazoloisoindigo (TzII)-based polymers, namely, P(TzII-dTh-dTh) and P(TzII-dTh-dTz), by copolymerizing thiophene-flanked TzII with bithiophene and bithiazole, respectively. Owing to the more electron-deficient nature of bithiazole than bithiophene, P(TzII-dTh-dTz) possesses deeper LUMO/HOMO levels of −3.45/−5.47 eV than P(TzII-dTh-dTh) (−3.34/−5.32 eV). The organic field-effect transistor (OFET) devices based on P(TzII-dTh-dTh) exhibited p-type behaviors with an average hole mobility value as high as 1.43 cm2·V−1·s−1, while P(TzII-dTh-dTz) showed typical ambipolar characteristics with average hole and electron mobilities of 0.38 and 0.56 cm2·V−1·s−1. In addition, we compared the performances of both polymers with other TzII-based polymers reported in our previous work, and showed that the charge carrier polarity can be manipulated by adjusting the number of the thiophene units between the acceptor unit. As the increase of the number of thiophene rings, charge carrier polarity shifts from electron-dominated ambipolar transport to hole-dominated ambipolar transport and then to unipolar hole transport in OFETs, which provides an effective molecular design strategy for further optimization of polymer OFET performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J.; Yu, G. Structural engineering in polymer semiconductors with aromatic n-heterocycles. Chem. Mater. 2021, 33, 1513–1539.

    Article  CAS  Google Scholar 

  2. Sun, H.; Guo, X.; Facchetti, A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 2020, 6, 1310–1326.

    Article  CAS  Google Scholar 

  3. Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381.

    Article  PubMed  CAS  Google Scholar 

  4. Wei, X.; Zhang, W.; Yu, G. Semiconducting polymers based on isoindigo and its derivatives: synthetic tactics, structural modifications, and applications. Adv. Funct. Mater. 2021, 31, 2010979.

    Article  CAS  Google Scholar 

  5. Liu, Q.; Bottle, S. E.; Sonar, P. Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics. Adv. Mater. 2020, 32, 1903882.

    Article  CAS  Google Scholar 

  6. Li, B.; Zou, X.; Xiong, M.; Li, Q.; Kang, X.; Mu, Y.; Wang, J.; Pei, J.; Yang, C.; Lan, Z.; Wan, X. Thiazoloisoindigo-based ambipolar polymers for excellent balanced hole and electron mobility. Mater. Chem. Front. 2022, 6, 3369–3381.

    Article  CAS  Google Scholar 

  7. Fusco, S.; Barra, M.; Gontrani, L.; Bonomo, M.; Chianese, F.; Galliano, S.; Centore, R.; Cassinese, A.; Carbone, M.; Carella, A. Novel thienyl dpp derivatives functionalized with terminal electron-acceptor groups: synthesis, optical properties and OFET performance. Chem. Eur. J. 2022, 28, e202104552.

    Article  PubMed  CAS  Google Scholar 

  8. Ocheje, M. U.; Comí, M.; Yang, R.; Chen, Z.; Liu, Y.; Yousefi, N.; Al-Hashimi, M.; Rondeau-Gagné, S. Molecular engineering of benzothiadiazole-based polymers: balancing charge transport and stretchability in organic field-effect transistors. J. Mater. Chem. C 2022, 10, 4236–4246.

    Article  CAS  Google Scholar 

  9. Shi, Y.; Guo, H.; Qin, M.; Wang, Y.; Zhao, J.; Sun, H.; Wang, H.; Wang, Y.; Zhou, X.; Facchetti, A.; Lu, X.; Zhou, M.; Guo, X. Imide-functionalized thiazole-based polymer semiconductors: synthesis, structure-property correlations, charge carrier polarity, and thin-film transistor performance. Chem. Mater. 2018, 30, 7988–8001.

    Article  CAS  Google Scholar 

  10. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 2019, 30, 1904545.

    Article  Google Scholar 

  11. Yang, J.; Liu, Q.; Hu, M.; Ding, S.; Liu, J.; Wang, Y.; Liu, D.; Gao, H.; Hu, W.; Dong, H. Well-Balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Sci. China Chem. 2021, 64, 1410–1416.

    Article  CAS  Google Scholar 

  12. Zou, X.; Cui, S.; Li, J.; Wei, X.; Zheng, M. Diketopyrrolopyrrole based organic semiconductor materials for field-effect transistors. Front. Chem. 2021, 9, 671294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cheon, H. J.; An, T. K.; Kim, Y. H. Diketopyrrolopyrrole (DPP)-based polymers and their organic field-effect transistor applications: a review. Macromol. Res. 2022, 30, 71–84.

    Article  CAS  Google Scholar 

  14. Wang, X.; Liu, S.; Ren, C.; Cao, L.; Zhang, W.; Wu, T. Synthesis, characterization, and field-effect transistor properties of naphthalene diimide-based conjugated polymers with fluorine-containing branched side chains. Macromolecules 2022, 55, 6415–6425.

    Article  CAS  Google Scholar 

  15. Ye, G.; Liu, J.; Qiu, X.; Stäter, S.; Qiu, L.; Liu, Y.; Yang, X.; Hildner, R.; Koster, L. J. A.; Chiechi, R. C. Controlling n-type molecular doping via regiochemistry and polarity of pendant groups on low band gap donor-acceptor copolymers. Macromolecules 2021, 54, 3886–3896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang, L.; Wang, Z.; Duan, C.; Wang, Z.; Deng, Y.; Xu, J.; Huang, F.; Cao, Y. Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors. Chem. Mater. 2018, 30, 8343–8351.

    Article  CAS  Google Scholar 

  17. Feng, K.; Guo, H.; Wang, J.; Shi, Y.; Wu, Z.; Su, M.; Zhang, X.; Son, J. H.; Woo, H. Y.; Guo, X. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structureBayproperty correlations, and thermoelectric performance. J. Am. Chem. Soc. 2021, 143, 1539–1552.

    Article  PubMed  CAS  Google Scholar 

  18. Comí, M.; Ocheje, M. U.; Attar, S.; Mu, A. U.; Philips, B. K.; Kalin, A. J.; Kakosimos, K. E.; Fang, L.; Rondeau-gagné, S.; al-hashimi, M. synthesis and photocyclization of conjugated diselenophene pyrrole-2,5-dione based monomers for optoelectronics. Macromolecules 2021, 54, 665–672.

    Article  Google Scholar 

  19. Kim, M.; Park, W.-T.; Park, S. A.; Park, C. W.; Ryu, S. U.; Lee, D. H.; Noh, Y.-Y.; Park, T. Controlling ambipolar charge transport in isoindigo-based conjugated polymers by altering fluorine substitution position for high-performance organic field-effect transistors. Adv. Funct. Mater. 2019, 29, 1805994.

    Article  Google Scholar 

  20. Wakioka, M.; Yamashita, N.; Mori, H.; Murdey, R.; Shimoaka, T.; Shioya, N.; Wakamiya, A.; Nishihara, Y.; Hasegawa, T.; Ozawa, F. Formation of trans-poly(thienylenevinylene) thin films by solid-state thermal isomerization. Chem. Mater. 2021, 33, 5631–5638.

    Article  CAS  Google Scholar 

  21. Cho, H. J.; Kang, S. J.; Lee, S. M.; Jeong, M.; Kim, G.; Noh, Y. Y.; Yang, C. Influence of simultaneous tuning of molecular weights and alkyl substituents of poly(thienoisoindigo-alt-naphthalene)s on morphology and change transport properties. ACS Appl. Mater. Interfaces 2017, 9, 30755–30763.

    Article  PubMed  CAS  Google Scholar 

  22. Raj, M. R.; Kim, Y.; Park, C. E.; An, T. K.; Park, T. Effect of the length of a symmetric branched side chain on charge transport in thienoisoindigo-based polymer field-effect transistors. Org. Electron. 2019, 65, 251–258.

    Article  CAS  Google Scholar 

  23. Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Lan, Z.; Pei, J.; Wan, X. Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers. Chem. Eur. J. 2018, 24, 9807–9811.

    Article  PubMed  CAS  Google Scholar 

  24. Li, C.; Zhang, H.; Mirie, S.; Peng, J.; Cai, M.; Wang, X.; Lan, Z.; Wan, X. A new approach to thiazoloisoindigo and derivatives using a lithium tetramethylpiperidine promoted cyclization to thiazoloisatin. Org. Chem. Front. 2018, 5, 442–446.

    Article  CAS  Google Scholar 

  25. Lv, S. Y.; Li, Q. Y.; Li, B. W.; Wang, J. Y.; Mu, Y. B.; Li, L.; Pei, J.; Wan, X. B. Thiazole-flanked thiazoloisoindigo as a monomer for balanced ambipolar polymeric field-effect transistors. Chinese J. Polym. Sci. 2022, 40, 1131–1140.

    Article  CAS  Google Scholar 

  26. Li, C. C.; Xiong, M.; Peng, J. W.; Wang, J. Y.; Zhang, H. R.; Mu, Y. B.; Pei, J.; Wan, X. B. Finely tuned electron/hole transport preference of thiazoloisoindigo-based conjugated polymers by incorporation of heavy chalcogenophenes. Chinese J. Polym. Sci. 2021, 39, 838–848.

    Article  CAS  Google Scholar 

  27. Li, B.; Zou, X.; Li, Q.; Sang, H.; Mu, Y.; Wang, J.; Pei, J.; Yang, C.; Li, L.; Wan, X. Alternating copolymers of thiophene-flanked thiazoloisoindigo and thiophene-flanked benzothiadiazole for high-performance ambipolar organic field-effect transistors. Org. Electron. 2023, 113, 106708.

    Article  CAS  Google Scholar 

  28. Eckstein, B. J.; Melkonyan, F. S.; Wang, G.; Wang, B.; Manley, E. F.; Fabiano, S.; Harbuzaru, A.; Ponce Ortiz, R.; Chen, L. X.; Facchetti, A.; Marks, T. J. Processable high electron mobility Sa-copolymers via mesoscale backbone conformational ordering. Adv. Funct. Mater. 2021, 31, 2009359.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 22102086 and 22075105) and the start-up funding from Jianghan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Wen Li or Xiao-Bo Wan.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

10118_2023_3043_MOESM1_ESM.pdf

Thiazoloisoindigo-based Polymer Semiconductors: Synthesis, Structure-Property Relationship, Charge Carrier Polarity, and Field-Effect Transistor Performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BW., Xiong, M., Liu, MH. et al. Thiazoloisoindigo-based Polymer Semiconductors: Synthesis, Structure-Property Relationship, Charge Carrier Polarity, and Field-Effect Transistor Performance. Chin J Polym Sci 42, 24–31 (2024). https://doi.org/10.1007/s10118-023-3043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3043-y

Keywords

Navigation