Skip to main content
Log in

Poly(3-hexylthio) thiophene Field-effect Transistor Device Performance: Impact of the Content of Hexylthio Side Chain on Backbone

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Regioregular poly(3-hexylthio)thiopene (P3HTT) has emerged tremendous potential in organic electronic applications due to the strong noncovalent interactions from the sulfur atom linked to thiophene. However, P3HTT generally exhibits low charge mobility mostly due to poor solution processability attributed to dense arrangement of hexylthio side chain in polymer, which led to strong noncovalent interactions among sulfur atoms. To balance the nonvalent interaction and aggregation for P3HTT, herein, we systematically study the effect of hexylthio side chain content in polymer backbone on the structure and properties. A series of regioregular P3HTT-based homopolymers (P3HTT, P3HTT-50, P3HTT-33 and P3HTT-25) were prepared via Kumada catalyst transfer polycondensation method from a set of mono-, bi-, ter- and quarter-thiophenes containing different contents of hexylthio side chain. The DFT calculation shows the planarity of polymers backbone could be improved through reducing the density of hexylthio side chain in polymer mainchain. And significant changes in their crystallinity, aggregation and optical properties were observed with the content of hexylthio side chain reducing. The P3HTT-33 displayed the highest field-effect transistor hole mobility of 2.83×10−2 cm2·V−1·s−1 resulting from a balance between the crystallinity and planarity. This study demonstrates modulating the content of hexylthio side chain in P3HTT is an effective strategy to optimize the opto-electronic properties of polymer obtaining excellent semiconductor device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C.; Zhang, X. T.; Dong, H. L.; Chen, X. D.; Hu, W. P. Challenges and emerging opportunities in high-mobility and low-energy-consumption organic field-effect transistors. Adv. Energy Mater. 2020, 10, 2000955.

    Article  CAS  Google Scholar 

  2. Sirringhaus, H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 2018, 4, 2748–2785.

    Article  CAS  Google Scholar 

  4. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T.; Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding. J. Am. Chem. Soc. 2019, 141, 3566–3575.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, W. N.; Tu, T. H.; Pai, C. H.; Cheng, K. H.; Tung, S. H.; Chan, Y. T.; Liu, C. L. Metallo-supramolecular rod-coil block copolymer thin films for stretchable organic field effect transistor application. Macromolecules 2022, 55, 10670–10681.

    Article  CAS  Google Scholar 

  6. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    Article  PubMed  CAS  Google Scholar 

  7. Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 2014, 114, 7006–7043.

    Article  PubMed  CAS  Google Scholar 

  8. Xu, X.; Li, Z.; Bi, Z.; Yu, T.; Ma, W.; Feng, K.; Li, Y.; Peng, Q. Highly efficient nonfullerene polymer solar cells enabled by a copper(I) coordination strategy employing a 1,3,4-oxadiazole-containing wide-bandgap copolymer donor. Adv. Mater. 2018, 30, 1800737.

    Article  Google Scholar 

  9. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  10. Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931–7958.

    Article  PubMed  CAS  Google Scholar 

  11. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238.

    Article  PubMed  CAS  Google Scholar 

  12. Shin, K.; Lee, E.; Lee, T.; Lee, Y. H.; Kim, D. H.; Kim, C.; Jung, J.; Jung, B. J.; Lee, M. H.; Efficient TADF from carbon-carbon bonded donor-acceptor molecules based on boron-carbonyl hybrid acceptor. Dyes Pigments 2023, 209, 110937.

    Article  CAS  Google Scholar 

  13. Chen, X. K.; Kim, D.; Brédas, J. L. Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight. Acc. Chem. Res. 2018, 51, 2215–2224.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D. The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities. Adv. Mater. 2019, 31, 1903104.

    Article  CAS  Google Scholar 

  15. Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846.

    Article  PubMed  CAS  Google Scholar 

  16. Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei, J. G. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 2018, 362, 1131–1134.

    Article  PubMed  CAS  Google Scholar 

  17. Tanwar, A. S.; Mehtab, M.; Kim, J.T.; Oh, K. J.; Iyer, P. K.; Im, Y. H. Real-time selective pesticide detection using catalytic behavior of zwitterionic conjugated polymer. Chem. Eng. J. 2023, 456, 141002.

    Article  Google Scholar 

  18. Yang, J.; Kang, F.; Wang, X.; Zhang, Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 2022, 9, 121–146.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan, Z.; Buckley, C.; Thomas, S.; Zhang, G.; Bargigia, I.; Wang, G.; Fu, B.; Silva, C.; Brédas, J. L.; Reichmanis, E. A thiazolenaphthalene diimide based n-channel donor-acceptor conjugated polymer. Macromolecules 2018, 51, 7320–7328.

    Article  CAS  Google Scholar 

  20. Shi, Y.; Li, W.; Wang, X.; Tu, L.; Li, M.; Zhao, Y.; Wang, Y.; Liu, Y. Isomeric acceptor-acceptor polymers: enabling electron transport with strikingly different semiconducting properties in n-channel organic thin-film transistors. Chem. Mater. 2022, 34, 1403–1413.

    Article  CAS  Google Scholar 

  21. Wei, C.; Zhang, W.; Huang, J.; Li, H.; Zhou, Y.; Yu, G. Realizing n-type field-effect performance via introducing trifluoromethyl groups into the donor-acceptor copolymer backbone. Macromolecules 2019, 52, 2911–2921.

    Article  CAS  Google Scholar 

  22. Kim, H.; Lee, J.; Kim, T.; Cho, M.; Choi, T. L. Precision synthesis of various low-bandgap donor-acceptor alternating conjugated polymers via living Suzuki-Miyaura catalyst-transfer polymerization. Angew. Chem. 2022, 134, 202205828.

    Article  Google Scholar 

  23. Janus, K.; Chlebosz, D.; Janke, A.; Goldman, W.; Kiersnowski, A. Contributions of polymer chain length, aggregation and crystallinity degrees in a model of charge carrier transport in ultrathin polymer films. Macromolecules 2023, 56, 964–973.

    Article  CAS  Google Scholar 

  24. Park, Y. D.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.; Cho, K. Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors. Org. Electron. 2006, 7, 514–520.

    Article  CAS  Google Scholar 

  25. Son, S. Y.; Park, T.; You, W. Understanding of face-on crystallites transitioning to edge-on crystallites in thiophene-based conjugated polymers. Chem. Mater. 2021, 33, 4541–4550.

    Article  CAS  Google Scholar 

  26. Schmode, P.; Schötz, K.; Dolynchuk, O.; Panzer, F.; Köhler, A.; Thurn-Albrecht, T.; Thelakkat, M. Influence of ω-oromo substitution on structure and optoelectronic properties of homopolymers and gradient copolymers of 3-hexylthiophene. Macromolecules 2020, 53, 2474–2484.

    Article  CAS  Google Scholar 

  27. Zhang, L.; Colella, N. S.; Cherniawski, B. P.; Mannsfeld, S. C. B.; Briseno, A. L. Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. ACS Appl. Mater. Interfaces 2014, 6, 5327–5343.

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen, C. B.; McCulloch, I. Recent advances in transistor performance of polythiophenes. Prog. Polym. Sci. 2013, 38, 2053–2069.

    Article  CAS  Google Scholar 

  29. Mishra, A.; Ma, C. Q.; Bauerle, P. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem. Rev. 2009, 109, 1141–1276.

    Article  PubMed  CAS  Google Scholar 

  30. Okamoto, K.; Luscombe, C. K. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym. Chem. 2011, 2, 2424–2434.

    Article  CAS  Google Scholar 

  31. McCullough, R. D.; Lowe, R. D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, 70–72.

  32. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). J. Org. Chem. 1993, 58, 904–912

    Article  CAS  Google Scholar 

  33. Chen, T. A.; Rieke, R. D. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992, 114, 10087–10088.

    Article  CAS  Google Scholar 

  34. Chen, T. A.; Wu, X.; Rieke, R. D. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties. J. Am. Chem. Soc. 1995, 117, 233–244.

    Article  CAS  Google Scholar 

  35. Persson, N. E.; Chu, P. H.; McBride, M.; Grover, M.; Reichmanis, E. Nucleation, growth, and alignment of poly(3-hexylthiophene) nanofibers for high-performance OFETs. Acc. Chem. Res. 2017, 50, 932–942.

    Article  PubMed  CAS  Google Scholar 

  36. Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules 2004, 37, 1169–1171.

    Article  CAS  Google Scholar 

  37. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Experimental evidence for the quasi-“living” nature of the grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules 2005, 33, 8649–8656.

    Article  Google Scholar 

  38. Chang, J. F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Sölling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 2004, 16, 4772–4776.

    Article  CAS  Google Scholar 

  39. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–68.

    Article  CAS  Google Scholar 

  40. Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J. S.; Heeney, M. Influence of backbone fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 2015, 137, 6866–6879.

    Article  PubMed  CAS  Google Scholar 

  41. Blaskovits, J. T.; Bura, T.; Beaupré, S.; Lopez, S. A.; Roy, C.; Soares, J. G.; Oh, A.; Quinn, J.; Li, Y.; Aspuru-Guzik, A.; Leclerc, M. A study of the degree of fluorination in regioregular poly(3-hexylthiophene). Macromolecules 2017, 50, 162–174.

    Article  CAS  Google Scholar 

  42. Gianluigi A.; Gennaro P.; Lorenzo D. B. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 2020, 120, 10145–10243.

    Article  Google Scholar 

  43. Huo, L.; Zhou, Y.; Li, Y. AlleyIthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid Commun. 2009, 30, 925–931.

    Article  PubMed  CAS  Google Scholar 

  44. Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C.; Wang, C. L.; Chang, W. J.; Liu, C. L.; Chen, M. C.; Facchetti, A. Intramolecular locked dithioalkylbithiophene-based semiconductors for highperformance organic field-effect transistors. Adv. Mater. 2017, 29, 1702414.

    Article  Google Scholar 

  45. Vegirju, S.; Luo, X. L.; Li, L. H.; Afraj, S. N.; Lee, C.; Zheng, D.; Hsieh, H. C.; Lin, C. C.; Hong, S. H.; Tsai, H. C.; Lee, G. H.; Tung, S. H.; Liu, C. L.; Chen, M. C.; Facchett, A. Solution processable pseudo n-thienoacenes via intramolecular S⋯S Lock for high performance organic field effect transistors. Chem. Mater. 2020, 32, 1422–1429.

    Article  Google Scholar 

  46. Vegiraju, S.; Torimtubun, A. A. A.; Lin, P. S.; Tsai, H. C.; Lien, W. C.; Chen, C. S.; He, G. Y.; Lin, C. Y.; Zheng, D.; Huang, Y. F.; Wu, Y. C.; Yau, S. L.; Lee, G. H.; Tung, S. H.; Wang, C. L.; Liu, C. L.; Chen, M. C.; Facchetti, A. Solution-processable quinoidal dithioalkylterthio-phene-based small molecules pseudo-pentathienoacenes via an intramolecular S-S lock for high-performance n-type organic field-effect transistors. ACS Appl. Mater. Interfaces 2020, 12, 25081–25091.

    Article  PubMed  CAS  Google Scholar 

  47. Shi, S.; Wang, H.; Uddin, M. A.; Yang, K.; Su, M.; Bianchi, L.; Chen, P.; Cheng, X.; Guo, H.; Zhang, S.; Woo, H. Y.; Guo, X. Head-to-head linked dialkylbifuran-based polymer semiconductors for highperformance organic thin-film transistors with tunable charge carrier polarity. Chem. Mater. 2019, 31, 1808–1817.

    Article  CAS  Google Scholar 

  48. Wu, X.; Chen, T. A.; Rieke, R. D. A study of small band gap polymers: head-to-tail regioregular poly[3-(alkylthio)thiophenes] prepared by regioselective synthesis using active zinc. Macromolecules 1996, 29, 7671–7677.

    Article  CAS  Google Scholar 

  49. Vandeleene, S.; Bergh, K. V.; Verbiest, T. Koeckelberghs, G. Influence of the polymerization methodology on the regioregularity and chiroptical properties of poly(alkylthiothiophene)s. Macromolecules 2008, 41, 5123–5131.

    Article  CAS  Google Scholar 

  50. Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Mixed Mg/Li amides of the type R2NMgCl·LiCl as highly efficient bases for the regioselective generation of functionalized aryl and heteroaryl magnesium compounds. Angew. Chem. Int. Ed. 2006, 45, 2958–2961.

    Article  CAS  Google Scholar 

  51. Lin, P. S.; Shoji, Y.; Afraj, S. N.; Ueda, M.; Lin, C. H.; Inagaki, S.; Endo, T.; Tung, S. H.; Chen, M. C.; Liu, C. L.; Higashihara, T. Controlled synthesis of poly[(3-alkylthio)thiophene]s and their application to organic field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 31898–31909.

    Article  PubMed  CAS  Google Scholar 

  52. Maria, F. D.; Olivelli, P.; Gazzano, M.; Zanelli, A.; Biasiucci, M.; Gigli, G.; Gentili, D.; D’Angelo, P.; Cavallini, M.; Barbarella, G. A successful chemical strategy to induce oligothiophene self-assembly into fibers with tunable shape and function. J. Am. Chem. Soc. 2011, 133, 8654–8661.

    Article  PubMed  Google Scholar 

  53. Chen, C. A.; Yang, P. C.; Wang, S. C.; Tung, S. H.; Su, W. F. Side chain effects on the optoelectronic properties and self-assembly behaviors of terthiophene-thieno[3,4-c]pyrrole-4,6-dione based conjugated polymers. Macromolecules 2018, 51, 7828–7835.

    Article  CAS  Google Scholar 

  54. Clark, J.; Chang, J. F.; Spano, F. C.; Friend, R. H.; Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 163306.

    Article  Google Scholar 

  55. Qiao, X. L.; Yang, J.; Han, L. H.; Zhang, J. D.; Zhu, M. F. Synergistic effects of solvent vapor assisted spin-coating and thermal annealing on enhancing the carrier mobility of poly(3-hexylthiophene) field-effect transistors. Chinese J. Polym. Sci. 2021, 39, 849–855.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (No. 20JC1414900), the National Natural Science Foundation of China (No. 52203005) and the Science and Technology Commission of Shanghai Municipality (No. 21ZR1401400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Lan Qiao or Mei-Fang Zhu.

Ethics declarations

Mei-Fang Zhu is an editorial board member for Chinese Journal of Polymer Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Electronic Supplementary Information

10118_2023_3042_MOESM1_ESM.pdf

Poly(3-hexylthio) thiophene Field-effect Transistor Device Performance: Impact of the Content of Hexylthio Side Chain on Backbone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HY., Han, LH., Kong, LW. et al. Poly(3-hexylthio) thiophene Field-effect Transistor Device Performance: Impact of the Content of Hexylthio Side Chain on Backbone. Chin J Polym Sci 42, 14–23 (2024). https://doi.org/10.1007/s10118-023-3042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3042-z

Keywords

Navigation