Skip to main content
Log in

Chemoselective and Living/Controlled Polymerization of Alkenyl Methacrylates by the Phosphonium Ylide/Organoaluminum Lewis Pairs

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Chemoselective, living/controlled polymerizations of allyl methacrylate (AMA) and vinyl methacrylate (VMA) with/without methyl methacrylate (MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs (LPs) have been realized. The P-ylide-2/AlMe(BHT)2 (P-ylide-2 = Ph3P=CHMe and BHT = 2,6-iBu2-4-MeC6H2O) was demonstrated to be superior by which homopolymers PAMAs (Mn=27.6–111.5 kg/mol and Đ=1.14–1.25) and PVMAs (Mn=28.4–78.4 kg/mol and Đ=1.12–1.18) and block copolymers PMMA-b-PAMA, PAMA-b-PVMA, PAMA-b-PMMA, PMMA-b-PAMA-b-PMMA, PAMA-b-PMMA-b-PAMA, and PAMA-b-PVMA-b-PAMA were synthesized. In the polymerizations, all of the monomers were reacted by the conjugated ester vinyl groups leaving intactly the nonconjugated acryloxy groups. The pendant acryloxy groups attached to the main chain enable further to post-functionalization by the AIBN-induced radical “thiol-ene” reaction using PhCH2SH. The thiolether side group-containing polymers PAMA-SCH2Ph and PAMA-SCH2Ph-b-PMMA-b-PAMA-SCH2Ph were thus prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, Z. M.; Liu, X. H.; Liu, H. W.; Li, Y. S. Synthesis of novel star polymers with vinyl-functionalized hyperbranched core via “arm-first” strategy. Macromolecules 2010, 43, 7985–7992.

    Article  CAS  Google Scholar 

  2. Sui, X. F.; Hempenius, M. A.; Vancso, G. Redox-active cross-linkable poly(ionic liquid)s. J. Am. Chem. Soc. 2012, 134, 4023–4025.

    Article  PubMed  CAS  Google Scholar 

  3. Barker, I. A.; El Harfi, J. E.; Adlington, K.; Howdle, S. M.; Irvine, D. J. Catalytic chain transfer mediated autopolymerization of divinylbenzene: toward facile synthesis of high alkene functional group density hyperbranched materials. Macromolecules 2012, 45, 9258–9266.

    Article  CAS  Google Scholar 

  4. Powell, K. T.; Cheng, C.; Wooley, K. L. Complex amphiphilic hyperbranched fluoropolymers by atom transfer radical self-condensing vinyl (co)polymerization. Macromolecules 2007, 40, 4509–4515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stevens, D. M.; Tempelaar, S.; Dove, A. P.; Harth, E. Nanosponge formation from organocatalytically synthesized poly(carbonate) copolymers. ACS Macro Lett. 2012, 1, 915–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Das, A.; Theato, P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chem. Rev. 2016, 116, 1434–1495.

    Article  PubMed  CAS  Google Scholar 

  7. Bermeshev, M. V.; Chapala, P. P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci. 2018, 84, 1–46.

    Article  CAS  Google Scholar 

  8. Zhao, Y.; Wu, H.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Q.; Ren, X.; Fu, C.; Wei, Y.; Wang, Z.; Wang, Y.; Tao, L. Postpolymerization modification of poly(dihydropyrimidin-2(1H)-thione)s via the thiourea–haloalkane reaction to prepare functional polymers. ACS Macro Lett. 2015, 4, 843–847.

    Article  PubMed  CAS  Google Scholar 

  9. Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Hawker, C. J.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev. 2009, 109, 5620–5686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Greenley, R. Z., In Polymer Handbook, 3rd ed. by Immergut, E. H., Brandup, J., Eds., Wiley, New York, 1989, p. 267

  11. Vardareli, T. K.; Keskin, S.; Usanmaz, A. Synthesis and characterization of poly (allyl methacrylate) obtained by free radical initiator. J. Macromol. Sci., Part A: Pure Appl. Chem. 2008, 45, 302–311.

    Article  CAS  Google Scholar 

  12. Sugiyama, F.; Satoh, K.; Kamigaito, M. Regiospecific radical polymerization of vinyl methacrylate in the presence of Lewis acids into soluble polymers with pendent vinyl ester substituents. Macromolecules 2008, 41, 3042–3048.

    Article  CAS  Google Scholar 

  13. Ma, J.; Cheng, C.; Sun, G.; Wooley, K. L. Well-defined polymers bearing pendent alkene functionalities via selective RAFT polymerization. Macromolecules 2008, 41, 9080–9089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mohan, Y. M.; Raghunadh, V.; Sivaram, S.; Baskaran, D. Reactive polymers bearing styrene pendants through selective anionic polymerization of 4-vinylbenzyl methacrylate. Macromolecules 2012, 45, 3387–3393.

    Article  Google Scholar 

  15. Tanaka, S.; Goseki, R.; Ishizone, T.; Hirao, A. Synthesis of well-defined novel reactive block polymers containing a poly(1,4l divinylbenzene) segment by living anionic polymerization. Macromolecules 2014, 47, 2333–2339.

    Article  CAS  Google Scholar 

  16. Chen, Y.; Fuchise, K.; Narumi, A.; Kawaguchi, S.; Satoh, T.; Kakuchi, T. Core-first synthesis of three-, four-, and six-armed star-shaped poly(methyl methacrylate)s by group transfer polymerization using phosphazene base. Macromolecules 2011, 44, 9091–9098.

    Article  CAS  Google Scholar 

  17. Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Group transfer polymerization—polymerization of acrylic monomers. Macromolecules 1987, 20, 1473–1488.

    Article  CAS  Google Scholar 

  18. Vidal, F.; Gowda, R. R.; Chen, E. Y. X. Chemoselective, stereospecific, and living polymerization of polar divinyl monomers by chiral zirconocenium catalysts. J. Am. Chem. Soc. 2015, 137, 9469–9480.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, T.; Liu, J.; Lu, X. B. Highly active half-metallocene yttrium catalysts for living and chemoselective polymerization of allyl methacrylate. Macromolecules 2015, 48, 7428–7434.

    Article  CAS  Google Scholar 

  20. McGraw, M. L.; Chen, E. Y. X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 2020, 53, 6102–6122.

    Article  CAS  Google Scholar 

  21. Zhao, W.; He, J.; Zhang, Y. Lewis pairs polymerization of polar vinyl monomers. Sci. Bull. 2019, 64, 1830–1840.

    Article  CAS  Google Scholar 

  22. Hong, M.; Chen, J.; Chen, E. Y. X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev. 2018, 118, 10551–10616.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, X.; Hong, M. Precise control of molecular weight and stereospecificity in lewis pair polymerization of semifluorinated methacrylates: mechanistic studies and stereocomplex formation. Macromolecules 2020, 53, 4659–4669.

    Article  CAS  Google Scholar 

  24. Zhang, Z.; Wang, X.; Wang, X.; Li, Y.; Hong, M. Tris(2,4-difluorophenyl)borane/triisobutylphosphine lewis pair: a thermostable and air/moisture-tolerant organic catalyst for the living polymerization of acrylates. Macromolecules 2021, 54, 8495–8502.

    Article  CAS  Google Scholar 

  25. Ottou, W. N.; Conde-Mendizabal, E.; Pascual, A.; Wirotius, A. L.; Bourichon, D.; Vignolle, J.; Robert, F.; Landais, Y.; Sotiropoulos, J. M.; Miqueu, K.; Taton, D. Organic Lewis pairs based on phosphine and electrophilic silane for the direct and controlled polymerization of methyl methacrylate: experimental and theoretical investigations. Macromolecules 2017, 50, 762–774.

    Article  Google Scholar 

  26. Wang, H.; Wang, Q.; He, J.; Zhang, Y. Living polymerization of acrylamides catalysed by N-heterocyclic olefin-based Lewis pairs. Polym. Chem. 2019, 10, 3597–3603.

    Article  CAS  Google Scholar 

  27. Knaus, M. G. M.; Giuman, M. M.; Pöthig, A.; Rieger, B. End of frustration: catalytic precision polymerization with highly interacting Lewis pairs. J. Am. Chem. Soc. 2016, 138, 7776–7781.

    Article  PubMed  CAS  Google Scholar 

  28. Bai, Y.; He, J.; Zhang, Y. Ultra-high-molecular- weight polymers produced by the immortal phosphine-based catalyst system. Angew. Chem. Int. Ed. 2018, 57, 17230–17234.

    Article  CAS  Google Scholar 

  29. McGraw, M. L.; Chen, E. Y. X. Catalytic Lewis pair polymerization of renewable methyl crotonate to high-molecular-weight polymers. ACS Catal. 2018, 8, 9877–9887.

    Article  CAS  Google Scholar 

  30. Clarke, R. W.; McGraw, M. L.; Gowda, R. R.; Chen, E. Y. X. Lewis pair polymerization of renewable indenone to erythro-ditactic high-Tg polymers with an upcycling avenue. Macromolecules 2020, 53, 640–648.

    Article  CAS  Google Scholar 

  31. Wang, X.; Zhang, Y.; Hong, M. Controlled and efficient polymerization of conjugated polar alkenes by lewis pairs based on sterically hindered aryloxide-substituted alkylaluminum. Molecules 2018, 23, 442–453.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, Q.; Zhao, W.; Zhang, S.; He, J.; Zhang, Y. Chen, E. Y. X. Living polymerization of conjugated polar alkenes catalyzed by N-heterocyclic olefin-based frustrated Lewis pairs. ACS Catal. 2018, 8, 3571–3578.

    Article  CAS  Google Scholar 

  33. Zhang, Y.; Miyake, G. M.; Chen, E. Y. X. Alane-based classical and frustrated lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 2010, 49, 10158–10162.

    Article  CAS  Google Scholar 

  34. He, J.; Zhang, Y.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [Al]-based frustrated Lewis pairs. Macromolecules 2014, 47, 7765–7774.

    Article  CAS  Google Scholar 

  35. Jia, Y.; Wang, Y.; Ren, W.; Xu, T.; Wang, J.; Lu, X. Mechanistic aspects of initiation and deactivation in N-heterocyclic olefin mediated polymerization of acrylates with alane as activator. Macromolecules 2014, 47, 1966–1972.

    Article  CAS  Google Scholar 

  36. Jia, Y.; Ren, W.; Liu, S.; Xu, T.; Wang, Y.; Lu, X. Controlled divinyl monomer polymerization mediated by Lewis pairs: a powerful synthetic strategy for functional polymers. ACS Macro Lett. 2014, 3, 896–899.

    Article  PubMed  CAS  Google Scholar 

  37. Gowda, R. R.; Chen, E. Y. X. Chemoselective Lewis pair polymerization of renewable multivinyl-functionalized γ-butyrolactones. Phil. Trans. R. Soc. A 2017, 375, 20170003.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu, P.; Wu, L.; Dong, L.; Xu, X. Chemoselective polymerization of polar divinyl monomers with rare-earth/phosphine Lewis pairs. Molecules 2018, 23, 360–369.

    Article  PubMed  PubMed Central  Google Scholar 

  39. McGraw, M. L.; Clarke, R. W.; Chen, E. Y. X. Compounded sequence control in polymerization of one-pot mixtures of highly reactive acrylates by differentiating Lewis pairs. J. Am. Chem. Soc. 2020, 142, 5969–5973.

    Article  PubMed  Google Scholar 

  40. Song, Y.; He, J.; Zhang, Y.; Gilsdorf, R. A.; Chen, E. Y. X. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat. Chem. 2022, 15, 366–376.

    Article  PubMed  Google Scholar 

  41. McGraw, M. L.; Clarke, R. W.; Chen, E. Y. X. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures. J. Am. Chem. Soc. 2021, 143, 3318–3322.

    Article  PubMed  CAS  Google Scholar 

  42. Li, C.; Zhao, W.; He, J.; Zhang, Y.; Zhang, W. Single-step expeditious synthesis of diblock copolymers with different morphologies by Lewis pair polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2022, 61, e202202448.

    Article  CAS  Google Scholar 

  43. Wan, Y.; He, J.; Zhang, Y.; Chen, E. Y. X. One-step synthesis of lignin-based triblock copolymers as high-temperature and UV-blocking thermoplastic elastomers. Angew. Chem. Int. Ed. 2022, 61, e202114946.

    Article  CAS  Google Scholar 

  44. Zhang, P.; Zhou, H.; Lu, X. Living and chemoselective (co)polymerization of polar divinyl monomers mediated by bulky Lewis pairs. Macromolecules 2019, 52, 4520–4525.

    Article  CAS  Google Scholar 

  45. Zhao, W.; Wang, Q.; He, J.; Zhang, Y. Chemoselective and living/controlled polymerization of polar divinyl monomers by N-heterocyclic olefin based classical and frustrated Lewis pairs. Living and chemoselective (co)polymerization of polar divinyl monomers mediated by bulky Lewis pairs. Polym. Chem. 2019, 10, 4328–4335.

    Article  CAS  Google Scholar 

  46. Chen, Z.; Zhao, W.; Liu, C.; Jiang, L.; Fu, G.; Zhang, Y.; Zhu, H. Phosphonium ylide/organoaluminum-based Lewis pairs for the highly efficient living/controlled polymerization of alkyl (meth)acrylates. Polym. Chem. 2023, 14, 2344–2354.

    Article  CAS  Google Scholar 

  47. Transue, W. J.; Yang, J.; Nava, M.; Sergeyev, I. V.; Barnum, T. J.; McCarthy, M. C.; Cummins, C. C. Synthetic and spectroscopic investigations enabled by modular synthesis of molecular phosphaalkyne precursors. J. Am. Chem. Soc. 2018, 140, 17985–17991.

    Article  PubMed  CAS  Google Scholar 

  48. Bestmann, H. J.; Stransky, W.; Vostrowsky, O. Darstellung Lithiumsalzfreier Ylidlosungen mit Natrium-bis-(trimethylsilyl)-amid. Chem. Ber. 1976, 109, 1694–1700.

    Article  CAS  Google Scholar 

  49. Lee, C. H.; Lee, S. J.; Park, J. W.; Kim, K. H.; Lee, B. Y.; Oh, J. S. Preparation of Al(C6F5)3 and its use for the modification of methylalumoxane. J. Mol. Catal. A-Chem. 1998, 132, 231–239.

    Article  CAS  Google Scholar 

  50. Stapleton, R. A.; Al-Humydi, A.; Chai, J.; Galan, B. R.; Collins, S. Sterically hindered aluminum alkyls: weakly interacting scavenging agents of use in olefin polymerization. Organometallics 2006, 25, 5083–5092.

    Article  CAS  Google Scholar 

  51. Faingol’d, E. E.; Bravaya, N. M.; Panin, A. N.; Babkina, O. N.; Saratovskikh, S. L.; Privalov, V. I. Isobutylaluminum aryloxides as metallocene activators in homo- and copolymerization of olefins. J. Appl. Polym. Sci. 2016, 133, 43276–43284.

    Article  Google Scholar 

  52. Usually the PAMAs herein obtained are of the rich syndiotacticity, as can be determined by the calculation of the proton intigation ratios of the Me side groups at the main chain from the 1H NMR data. See: reference 18 and Bolig, A. D.; Chen, E. Y. X. ansa-Zirconocene ester enolates: synthesis, structure, reaction with organo-Lewis acids, and application to polymerization of methacrylates. J. Am. Chem. Soc. 2004, 126, 4897–4906.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21972112 and 22225104) and China Postdoctoral Science Foundation (Nos. 2022TQ0115 and 2022M711297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu-Yin Jiang, Yue-Tao Zhang or Hong-Ping Zhu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3039_MOESM1_ESM.pdf

Chemoselective and Living/Controlled Polymerization of Alkenyl Methacrylates by the Phosphonium Ylide/Organoaluminum-Based Lewis Pairs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZK., Zhao, WC., Zhao, YL. et al. Chemoselective and Living/Controlled Polymerization of Alkenyl Methacrylates by the Phosphonium Ylide/Organoaluminum Lewis Pairs. Chin J Polym Sci 42, 159–167 (2024). https://doi.org/10.1007/s10118-023-3039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3039-7

Keywords

Navigation