Skip to main content
Log in

Unconventional 2D Periodic Nanopatterns Based on Block Molecules

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This review summarizes the self-assembly of block molecules forming unconventional two-dimensional (2D) periodic nanopatterns. Especially, we emphasize the structural evolution from simple columnar phases to complex 2D tiling morphologies in soft materials including block copolymers, liquid crystals, giant molecules, etc. Then, the state-of-the-art nanofabrication technologies for making sophisticated nanostructures with specific functions via combining both bottom-up assembly and top-down lithography-based methods are discussed, highlighting the use of directed self-assembly processes. Finally, we provide our perspective on this area. By further increasing the complexity of block molecules and the designability of lithography, low-dimensional ordered morphologies will be particularly promising for further application in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y.; Lei, H.; Guo, Q. Y.; Liu, X.; Li, X.; Wu, Y.; Li, W.; Zhang, W.; Liu, G.; Yan, X. Y.; Cheng, S. Z. D. Spherical packing superlattices in self-assembly of homogenous soft matter: progresses and potentials. Chinese J. Polym. Sci. 2023, 41, 607–620.

    Article  CAS  Google Scholar 

  2. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; De Pablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414.

    Article  CAS  PubMed  Google Scholar 

  3. Hawker, C. J.; Russell, T. P. Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull. 2005, 30, 952–966.

    Article  CAS  Google Scholar 

  4. Ji, S.; Wan, L.; Liu, C. C.; Nealey, P. F. Directed self-assembly of block copolymers on chemical patterns: a platform for nanofabrication. Progr. Polym. Sci. 2016, 54–55, 76–127.

    Article  Google Scholar 

  5. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2013, 47, 2–12.

    Article  Google Scholar 

  6. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L. Non-centrosymmetric superlattices in block copolymer blends. Nature 1999, 398, 137–139.

    Article  CAS  Google Scholar 

  7. Shi, W. Role of defects in achieving highly asymmetric lamellar self-assembly in block copolymer/homopolymer blends. J. Phys. Chem. Lett. 2020, 11, 2724–2730.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, M.; Yue, K.; Huang, J.; Liu, C.; Zhou, Z.; Wang, J.; Wu, K.; Shan, W.; Shi, A. C.; Cheng, S. Z. D. Highly asymmetric phase behaviors of polyhedral oligomeric silsesquioxane-based multiheaded giant surfactants. ACS Nano 2018, 12, 1868–1877.

    Article  CAS  PubMed  Google Scholar 

  9. Shao, Y.; Hou, B.; Li, W.; Yan, X.; Wang, X.; Xu, Y.; Dong, Q.; Li, W.; He, J.; Zhang, W. B. Three-component bolaform giant surfactants forming lamellar nanopatterns with sub-5 nm feature sizes. Macromolecules 2023, 56, 1562–1571.

    Article  CAS  Google Scholar 

  10. Wen, T.; Ni, B.; Liu, Y.; Zhang, W.; Guo, Z. H.; Lee, Y. C.; Ho, R. M.; Cheng, S. Z. D. Towards achieving a large-area and defect-free nano-line pattern via controlled self-assembly by sequential annealing. Giant 2021, 8, 100078.

    Article  CAS  Google Scholar 

  11. M. D. Graef, M. E. M., in Structure of materials: an introduction to crystallography, diffraction and symmetry. 2nd Ed.; Cambridge University Press: Cambridge, 2012.

    Book  Google Scholar 

  12. Grunbaum, B. S., G. C., in Tilings and Patterns. Freeman: New York, 1986.

    Google Scholar 

  13. Keys, A. S.; Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 2007, 99, 235503.

    Article  PubMed  Google Scholar 

  14. Gillard, T. M.; Lee, S.; Bates, F. S. Dodecagonal quasicrystalline order in a diblock copolymer melt. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5167–5172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan, C.; Zhao, M.; Qiang, Y.; Chen, L.; Li, W.; Qiu, F.; Shi, A. C. Stability of two-dimensional dodecagonal quasicrystalline phase of block copolymers. Macromolecules 2018, 51, 7713–7721.

    Article  CAS  Google Scholar 

  16. Liu, Y.; Liu, T.; Yan, X. Y.; Guo, Q. Y.; Lei, H.; Huang, Z.; Zhang, R.; Wang, Y.; Wang, J.; Liu, F.; Bian, F. G.; Meijer, E. W.; Aida, T.; Huang, M.; Cheng, S. Z. D. Expanding quasiperiodicity in soft matter: supramolecular decagonal quasicrystals by binary giant molecule blends. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2115304119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 1990, 41, 525–557.

    Article  CAS  PubMed  Google Scholar 

  18. Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32–38.

    Article  CAS  Google Scholar 

  19. Xie, N.; Liu, M.; Deng, H.; Li, W.; Qiu, F.; Shi, A. C. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. J. Am. Chem. Soc. 2014, 136, 2974–2977.

    Article  CAS  PubMed  Google Scholar 

  20. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Multiblock polymers: Panacea or Pandora’s box? Science 2012, 336, 434–440.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, W.; Wang, Z. G. Morphology of ABC triblock copolymers. Macromolecules 1995, 28, 7215–7223.

    Article  CAS  Google Scholar 

  22. Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers. Macromol. Chem. Phys. 1997, 198, 1051–1083.

    Article  CAS  Google Scholar 

  23. Phan, S.; Fredrickson, G. H. Morphology of symmetric ABC triblock copolymers in the strong segregation limit. Macromolecules 1998, 31, 59–63.

    Article  CAS  Google Scholar 

  24. Bailey, T. S.; Pham, H. D.; Bates, F. S. Morphological behavior bridging the symmetric AB and ABC states in the poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymer system. Macromolecules 2001, 34, 6994–7008.

    Article  CAS  Google Scholar 

  25. Buchanan, N.; Browka, K.; Ketcham, L.; Le, H.; Padmanabhan, P. Conformational and topological correlations in non-frustated triblock copolymers with homopolymers. Soft Matter 2021, 17, 758–768.

    Article  PubMed  Google Scholar 

  26. Liu, M.; Li, W.; Qiu, F.; Shi, A. C. Theoretical study of phase behavior of frustrated ABC linear triblock copolymers. Macromolecules 2012, 45, 9522–9530.

    Article  CAS  Google Scholar 

  27. Breiner, U.; Krappe, U.; Stadler, R. Evolution of the “knitting pattern” morphology in ABC triblock copolymers. Macromol. Rapid Commun. 1996, 17, 567–575.

    Article  CAS  Google Scholar 

  28. Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Structural characterization of the “knitting pattern” in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) triblock copolymers. Macromolecules 1998, 31, 135–141.

    Article  CAS  Google Scholar 

  29. Ott, H.; Abetz, V.; Altstadt, V. Morphological studies of poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the composition region of the “knitting pattern” morphology. Macromolecules 2001, 34, 2121–2128.

    Article  CAS  Google Scholar 

  30. Asai, Y.; Yamada, K.; Yamada, M.; Takano, A.; Matsushita, Y. Formation of tetragonally-packed rectangular cylinders from ABC block terpolymer blends. ACS Macro Lett. 2014, 3, 166–169.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, M.; Orido, T.; Takano, A.; Matsushita, Y. The largest quasicrystalline tiling with dodecagonal symmetry from a single pentablock quarterpolymer of the AB1CB2D type. ACS Nano 2022, 16, 6111–6117.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. C. Stabilizing the Frank-Kasper phases via binary blends of AB diblock copolymers. ACS Macro Lett. 2016, 5, 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  33. Asai, Y.; Takano, A.; Matsushita, Y. Asymmetric double tetragonal domain packing from ABC triblock terpolymer blends with chain length difference. Macromolecules 2016, 49, 6940–6946.

    Article  CAS  Google Scholar 

  34. Liu, H. H.; Huang, C. I.; Shi, A. C. Self-assembly of linear ABCBA pentablock terpolymers. Macromolecules 2015, 48, 6214–6223.

    Article  CAS  Google Scholar 

  35. Hsu, C. H.; Yue, K.; Wang, J.; Dong, X. H.; Xia, Y.; Jiang, Z.; Thomas, E. L.; Cheng, S. Z. D. Thickness-dependent order-to-order transitions of bolaform-like giant surfactant in thin films. Macromolecules 2017, 50, 7282–7290.

    Article  CAS  Google Scholar 

  36. Guliyeva, A.; Vayer, M.; Warmont, F.; Takano, A.; Matsushita, Y.; Sinturel, C. Transition pathway between gyroid and cylindrical morphology in linear triblock terpolymer thin films. Macromolecules 2019, 52, 6641–6648.

    Article  CAS  Google Scholar 

  37. Su, Z.; Zhang, R.; Yan, X. Y.; Guo, Q. Y.; Huang, J.; Shan, W.; Liu, Y.; Liu, T.; Huang, M.; Cheng, S. Z. D. The role of architectural engineering in macromolecular self-assemblies via noncovalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 2020, 103, 101230.

    Article  CAS  Google Scholar 

  38. Li, L.; Li, W. Effect of branching architecture on the self-assembly of symmetric ABC-type block terpolymers. Giant 2021, 7, 100065.

    Article  CAS  Google Scholar 

  39. Ma, Z.; Zhou, D.; Xu, M.; Gan, Z.; Zheng, T.; Wang, S.; Tan, R.; Dong, X. H. Discrete linear-branched block copolymer with broken architectural symmetry. Macromolecules 2023, 56, 833–840.

    Article  CAS  Google Scholar 

  40. Gan, Z.; Zhou, D.; Ma, Z.; Xu, M.; Xu, Z.; He, J.; Zhou, J.; Dong, X. H.. Local chain feature mandated self-assembly of block copolymers. J. Am. Chem. Soc. 2022, 145, 487–497.

    Article  PubMed  Google Scholar 

  41. Sun, H. J.; Zhang, S.; Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 2015, 44, 3900–3923.

    Article  CAS  PubMed  Google Scholar 

  42. Bates, M. W.; Barbon, S. M.; Levi, A. E.; Lewis, R. M.; Beech, H. K.; Vonk, K. M.; Zhang, C.; Fredrickson, G. H.; Hawker, C. J.; Bates, C. M. Synthesis and self-assembly of ABn miktoarm star polymers. ACS Macro Lett. 2020, 9, 396–403.

    Article  CAS  PubMed  Google Scholar 

  43. Matsushita, Y. Creation of hierarchically ordered nanophase structures in block polymers having various competing interactions. Macromolecules 2007, 40, 771–776.

    Article  CAS  Google Scholar 

  44. Ito, S.; Goseki, R.; Ishizone, T.; Hirao, A. Successive synthesis of well-defined multiarmed miktoarm star polymers by iterative methodology using living anionic polymerization. Eur. Polym. J. 2013, 49, 2545–2566.

    Article  CAS  Google Scholar 

  45. Hayashida, K.; Takano, A.; Arai, S.; Shinohara, Y.; Amemiya, Y.; Matsushita, Y. Systematic transitions of tiling patterns formed by ABC star-shaped terpolymers. Macromolecules 2006, 39, 9402–9408.

    Article  CAS  Google Scholar 

  46. Takano, A.; Kawashima, W.; Noro, A.; Isono, Y.; Tanaka, N.; Dotera, T.; Matsushita, Y. A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 2427–2432.

    Article  CAS  Google Scholar 

  47. Hayashida, K.; Dotera, T.; Takano, A.; Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 2007, 98, 195502.

    Article  PubMed  Google Scholar 

  48. Chernyy, S.; Mahalik, J. P.; Kumar, R.; Kirkensgaard, J. J. K.; Arras, M. M. L.; Kim, H.; Schulte, L.; Ndoni, S.; Smith, G. S.; Mortensen, K.; Sumpter, B. G.; Russell, T. P.; Almdal, K. On the morphological behavior of ABC miktoarm stars containing poly(cis 1,4-isoprene), poly(styrene), and poly(2-vinylpyridine). J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1491–1504.

    Article  CAS  Google Scholar 

  49. Takano, A.; Wada, S.; Sato, S.; Araki, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno, A.; Tanaka, N.; Matsushita, Y. Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography. Macromolecules 2004, 37, 9941–9946.

    Article  CAS  Google Scholar 

  50. Sioula, S.; Hadjichristidis, N.; Thomas, E. L. Novel 2-dimensionally periodic non-constant mean curvature morphologies of 3-miktoarm star terpolymers of styrene, isoprene, and methyl methacrylate. Macromolecules 1998, 31, 5272–5277.

    Article  CAS  Google Scholar 

  51. Nunns, A.; Ross, C. A.; Manners, I. Synthesis and bulk self-assembly of ABC star terpolymers with a polyferrocenylsilane metalloblock. Macromolecules 2013, 46, 2628–2635.

    Article  CAS  Google Scholar 

  52. Matsushita, Y.; Hayashida, K.; Dotera, T.; Takano, A. Kaleidoscopic morphologies from ABC star-shaped terpolymers. J. Phys.: Condens. Matter 2011, 23, 284111.

    PubMed  Google Scholar 

  53. Chernyy, S.; Kirkensgaard, J. J. K.; Mahalik, J. P.; Kim, H.; Arras, M. M. L.; Kumar, R.; Sumpter, B. G.; Smith, G. S.; Mortensen, K.; Russell, T. P.; Almdal, K. Bulk and surface morphologies of ABC miktoarm star terpolymers composed of PDMS, PI, and PMMA arms. Macromolecules 2018, 51, 1041–1051.

    Article  CAS  Google Scholar 

  54. Wilks, T. R.; Bath, J.; de Vries, J. W.; Raymond, J. E.; Herrmann, A.; Turberfield, A. J.; O’Reilly, R. K. “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer. ACS Nano 2013, 7, 8561–8572.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, K.; Zhang, J.; Liang, Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts. J. Phys. Chem. B 2015, 119, 14551–14562.

    Article  CAS  PubMed  Google Scholar 

  56. Liang, R.; Xue, Y.; Fu, X.; Le, A. N.; Song, Q.; Qiang, Y.; Xie, Q.; Dong, R.; Sun, Z.; Osuji, C. O.; Johnson, J. A.; Li, W.; Zhong, M. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nat. Mater. 2022, 21, 1434–1440.

    Article  CAS  PubMed  Google Scholar 

  57. Hofman, A. H.; Terzic, I.; Stuart, M. C. A.; ten Brinke, G.; Loos, K. Hierarchical self-assembly of supramolecular double-comb triblock terpolymers. ACS Macro Lett. 2018, 7, 1168–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hou, B.; Yan, X.; He, J.; Zhang, W. B.; Shao, Y. Self-assembly of three-component bolaform giant surfactants with branched architectures. Giant 2023, 15, 100165.

    Article  CAS  Google Scholar 

  59. Song, Q.; Dong, Q.; Liang, R.; Xue, Y.; Zhong, M.; Li, W. Hierarchical self-assembly of ABC-type bottlebrush copolymers. Macromolecules 2023, 56, 5470–5481.

    Article  CAS  Google Scholar 

  60. Miyase, H.; Asai, Y.; Takano, A.; Matsushita, Y.. Kaleidoscopic tiling patterns with large unit cells from ABC star-shaped terpolymer/diblock copolymer blends with hydrogen bonding interaction. Macromolecules 2017, 50, 979–986.

    Article  CAS  Google Scholar 

  61. Zhang, W. B.; Wu, X. L.; Yin, G. Z.; Shao, Y.; Cheng, S. Z. D. From protein domains to molecular nanoparticles: what can giant molecules learn from proteins? Mater. Horizons 2017, 4, 117–132.

    Article  CAS  Google Scholar 

  62. Zhang, W. B.; Yu, X.; Wang, C. L.; Sun, H. J.; Hsieh, I. F.; Li, Y.; Dong, X. H.; Yue, K.; Van Horn, R.; Cheng, S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: from “nanoatoms” to giant molecules. Macromolecules 2014, 47, 1221–1239.

    Article  CAS  Google Scholar 

  63. Yu, X.; Li, Y.; Dong, X. H.; Yue, K.; Lin, Z.; Feng, X.; Huang, M.; Zhang, W. B.; Cheng, S. Z. D. Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. J. Polym. Sci., Part B: Polym. Phys. 2010, 52, 1309–1325.

    Article  Google Scholar 

  64. Yin, G. Z.; Zhang, W. B.; Cheng, S. Z. D. Giant molecules: where chemistry, physics, and bio-science meet. Sci. China Chem. 2017, 60, 338–352.

    Article  CAS  Google Scholar 

  65. Xu, Z.; Li, W. Control the self-assembly of block copolymers by tailoring the packing frustration. Chin. J. Chem. 2022, 40, 1083–1090.

    Article  CAS  Google Scholar 

  66. Dong, X. H.; Li, Y.; Lin, Z.; Yu, X.; Yue, K.; Liu, H.; Huang, M.; Zhang, W. B.; Cheng, S. Z. D., in Solution self-assembly of giant surfactants: an exploration on molecular architectures. John Wiley & Sons, 2018.

  67. Shao, Y.; Yang, S.; Zhang, W. B. Macromolecular Isomerism in Giant Molecules. Chem. Eur. J. 2020, 26, 2985–2992.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, W. J.; Xu, X.; Shao, Y.; Liao, J. W.; Jian, H. X.; Xue, B.; Yang, S. G. Fractal growth of giant amphiphiles in Langmuir-Blodgett films. Chinese J. Polym. Sci. 2022, 40, 556–566.

    Article  CAS  Google Scholar 

  69. Yu, X.; Yue, K.; Hsieh, I. F.; Li, Y.; Dong, X. H.; Liu, C.; Xin, Y.; Wang, H. F.; Shi, A. C.; Newkome, G. R.; Ho, R. M.; Chen, E. Q.; Zhang, W. B.; Cheng, S. Z. D.. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 10078–10083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, C. H.; Zhou, S.; Shian, S.; Clarke, D. R.; Suo, Z. Organic liquid-crystal devices based on ionic conductors. Mater. Horiz. 2017, 4, 1102–1109.

    Article  CAS  Google Scholar 

  71. Gao, X.; Lu, F.; Dong, B.; Zhou, T.; Liu, Y.; Zheng, L. Temperature-responsive proton-conductive liquid crystals formed by the self-assembly of zwitterionic ionic liquids. RSC Adv. 2015, 5, 63732–63737.

    Article  CAS  Google Scholar 

  72. Ungar, G.; Zeng, X. Frank-Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 2005, 1, 95–106.

    Article  CAS  PubMed  Google Scholar 

  73. Percec, V.; Huang, N.; Xiao, Q.; Partridge, B. E.; Sahoo, D.; Imam, M. R.; Peterca, M.; Graf, R.; Spiess, H. W.; Zeng, X.; Ungar, G. Self-organization of rectangular bipyramidal helical columns by supramolecular orientational memory epitaxially nucleated from a Frank-Kasper a phase. Giant 2022, 9, 100084.

    Article  CAS  Google Scholar 

  74. Nickmans, K.; Schenning, A. P. H. J. Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning. Adv. Mater. 2017, 30, 1703713.

    Article  Google Scholar 

  75. Chen, X.; Du, F.; Guo, T.; Lao, J.; Zhang, X.; Zhang, Z.; Liu, F.; Li, J.; Chen, C.; Guan, B. O. Liquid crystal-embedded tilted fiber grating electric field intensity sensor. J. Lightw. Technol. 2017, 35, 3347–3353.

    Article  CAS  Google Scholar 

  76. de Oliveira, B. F.; Avelino, P. P.; Moraes, F.; Oliveira, J. C. R. E. Nematic liquid crystal dynamics under applied electric fields. Phys. Rev. E 2010, 82, 041707.

    Article  CAS  Google Scholar 

  77. Demus, D.; Goodby, J. W.; Gray, G. W.; Spiess, H. W., in Handbook of liquid crystals. Wiley-VCH: Cambridge, 1998.

    Book  Google Scholar 

  78. Percec, V.; Peterca, M.; Sienkowska, M. J.; Ilies, M. A.; Aqad, E.; Smidrkal, J.; Heiney, P. A. Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers. J. Am. Chem. Soc. 2006, 128, 3324–3334.

    Article  CAS  PubMed  Google Scholar 

  79. Percec, V.; Mitchell, C. M.; Cho, W. D.; Uchida, S.; Glodde, M.; Ungar, G.; Zeng, X.; Liu, Y.; Balagurusamy, V. S. K.; Heiney, P. A. Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)y-AB3 and (AB)y-AB2 building blocks. J. Am. Chem. Soc. 2004, 126, 6078–6094.

    Article  CAS  PubMed  Google Scholar 

  80. Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Peterca, M.; Won, B. C.; Huang, C.; Lipski, L. R.; Zeng, X.; Ungar, G.; Heiney, P. A.; Percec, V. Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons. J. Am. Chem. Soc. 2009, 131, 17500–17521.

    Article  CAS  PubMed  Google Scholar 

  81. Tschierske, C.; Nurnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X. B.; Ungar, G. Complex tiling patterns in liquid crystals. Interface Focus 2012, 2, 669–680.

    Article  CAS  PubMed  Google Scholar 

  82. Lehmann, A.; Scholte, A.; Prehm, M.; Liu, F.; Zeng, X.; Ungar, G.; Tschierske, C. Soft rectangular sub-5 nm tiling patterns by liquid crystalline self-assembly of T-shaped bolapolyphiles. Adv. Funct. Mater. 2018, 28, 1804162.

    Article  Google Scholar 

  83. Tschierske, C. Liquid crystal engineering-new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 2007, 36, 1930–1970.

    Article  CAS  PubMed  Google Scholar 

  84. Zeng, X.; Kieffer, R.; Glettner, B.; Nurnberger, C.; Liu, F.; Pelz, K.; Prehm, M.; Baumeister, U.; Hahn, H.; Lang, H.; Gehring, G. A.; Weber, C. H. M.; Hobbs, J. K.; Tschierske, C.; Ungar, G. Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals. Science 2011, 331, 1302–1306.

    Article  CAS  PubMed  Google Scholar 

  85. Nürnberger, C.; Lu, H.; Zeng, X.; Liu, F.; Ungar, G.; Hahn, H.; Lang, H.; Prehm, M.; Tschierske, C. Soft self-assembled sub-5 nm scale chessboard and snub-square tilings with oligo(paraphenyleneethynylene) rods. Chem. Commun. 2019, 55, 4154–4157.

    Article  Google Scholar 

  86. Poppe, S.; Lehmann, A.; Scholte, A.; Prehm, M.; Zeng, X.; Ungar, G.; Tschierske, C. Zeolite-like liquid crystals. Nat. Commun. 2015, 6, 8637.

    Article  CAS  PubMed  Google Scholar 

  87. Glettner, B.; Liu, F.; Zeng, X.; Prehm, M.; Baumeister, U.; Walker, M.; Bates, M. A.; Boesecke, P.; Ungar, G.; Tschierske, C. Liquid-crystalline kagome. Angew. Chem. Int. Ed. 2008, 47, 9063–9066.

    Article  CAS  Google Scholar 

  88. Liu, F.; Kieffer, R.; Zeng, X.; Pelz, K.; Prehm, M.; Ungar, G.; Tschierske, C. Arrays of giant octagonal and square cylinders by liquid crystalline self-assembly of X-shaped polyphilic molecules. Nat. Commun. 2012, 3, 1104.

    Article  PubMed  Google Scholar 

  89. Zeng, X.; Poppe, S.; Lehmann, A.; Prehm, M.; Chen, C.; Liu, F.; Lu, H.; Ungar, G.; Tschierske, C. A self-assembled bicontinuous cubic phase with a single-diamond network. Angew. Chem. Int. Ed. 2019, 58, 7375–7379.

    Article  CAS  Google Scholar 

  90. Zeng, X.; Prehm, M.; Ungar, G.; Tschierske, C.; Liu, F. Formation of a double diamond cubic phase by thermotropic liquid crystalline self-assembly of bundled bolaamphiphiles. Angew. Chem. Int. Ed. 2016, 55, 8324–8327.

    Article  CAS  Google Scholar 

  91. Poppe, M.; Chen, C.; Poppe, S.; Liu, F.; Tschierske, C. A periodic dodecagonal supertiling by self-assembly of star-shaped molecules in the liquid crystalline state. Commun. Chem. 2020, 3, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeng, X.; Glettner, B.; Baumeister, U.; Chen, B.; Ungar, G.; Liu, F.; Tschierske, C. A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells. Nat. Chem. 2023, 15, 625–632.

    Article  CAS  PubMed  Google Scholar 

  93. Yang, W.; Liu, D.; Liu, Y.; Yang, S.; Liu, Y.; Shen, Z.; Yang, H.; Fan, X. H.; Zhou, Q. F. Large-area uniaxially oriented sub-5 nm line patterns of hybrid liquid crystals constructed by perylene diimide and oligo(dimethylsiloxane). Chem. Eur. J. 2023, 29, e202203702.

    Article  CAS  PubMed  Google Scholar 

  94. Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 2007, 46, 4832–4887.

    Article  CAS  Google Scholar 

  95. Feng, X.; Kawabata, K.; Cowan, M. G.; Dwulet, G. E.; Toth, K.; Sixdenier, L.; Haji-Akbari, A.; Noble, R. D.; Elimelech, M.; Gin, D. L.; Osuji, C. O. Single crystal texture by directed molecular self-assembly along dual axes. Nat. Mater. 2019, 18, 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  96. Lyu, X.; Xiao, A.; Shi, D.; Li, Y.; Shen, Z.; Chen, E. Q.; Zheng, S.; Fan, X. H.; Zhou, Q. F. Liquid crystalline polymers: discovery, development, and the future. Polymer 2020, 202, 122740.

    Article  CAS  Google Scholar 

  97. Chang, W. Y.; Shi, D.; Jiang, X. Q.; Jiang, J. D.; Zhao, Y.; Ren, X. K.; Yang, S.; Chen, E. Q. Precise polyethylene derivatives bearing mesogenic side-chains: delicate self-assembly depending on graft density. Polym. Chem. 2020, 11, 1454–1461.

    Article  CAS  Google Scholar 

  98. Liddle, J. A.; Gallatin, G. M. Nanomanufacturing: a perspective. ACS Nano 2016, 10, 2995–3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Goldfarb, D. L. Evolution of patterning materials towards the Moore’s Law 2.0 Era. Jpn. J. Appl. Phys. 2022, 61, SD0802.

    Article  Google Scholar 

  100. Gurpreet, S., in Low variability metal pitch scaling with directed self-assembly, Proc.SPIE, 2022; p PC1205401.

  101. Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 2007, 32, 1152–1204.

    Article  CAS  Google Scholar 

  102. Russell, T. P.; Chai, Y. 50th Anniversary perspective: putting the squeeze on polymers: a perspective on polymer thin films and interfaces. Macromolecules 2017, 50, 4597–4609.

    Article  CAS  Google Scholar 

  103. Cummins, C.; Lundy, R.; Walsh, J. J.; Ponsinet, V.; Fleury, G.; Morris, M. A. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 2020, 35, 100936.

    Article  CAS  Google Scholar 

  104. Chen, Y.; Shu, Z.; Zhang, S.; Zeng, P.; Liang, H.; Zheng, M.; Duan, H. Sub-10 nm fabrication: methods and applications. Int. J. Extrem. Manuf. 2021, 3, 032002.

    Article  CAS  Google Scholar 

  105. Hu, X. H.; Xiong, S. Fabrication of nanodevices through block copolymer self-assembly. Front. Nanotechnol. 2022, 4, 762996.

    Article  Google Scholar 

  106. Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725–6760.

    Article  CAS  Google Scholar 

  107. Onses, M. S.; Song, C.; Williamson, L.; Sutanto, E.; Ferreira, P. M.; Alleyne, A. G.; Nealey, P. F.; Ahn, H.; Rogers, J. A. Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 2013, 8, 667–675.

    Article  CAS  PubMed  Google Scholar 

  108. Kathrein, C. C.; Bai, W.; Currivan-Incorvia, J. A.; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Böker, A.; Tsarkova, L.; Ross, C. A. Combining graphoepitaxy and electric fields toward uniaxial alignment of solvent-annealed polystyrene-b-poly(dimethylsiloxane) block copolymers. Chem. Mater. 2015, 27, 6890–6898.

    Article  CAS  Google Scholar 

  109. Pathangi, H.; Chan, B. T.; Bayana, H.; Vandenbroeck, N.; Heuvel, D. V. D.; Look, L. V.; Rincon-Delgadillo, P.; Cao, Y.; Kim, J.; Lin, G.; Parnell, D.; Nafus, K.; Harukawa, R.; Chikashi, I.; Polli, M.; D’Urzo, L.; Gronheid, R.; Nealey, P. Defect mitigation and root cause studies in 14 nm half-pitch chemo-epitaxy directed self-assembly LiNe flow. J. Micro/Nanolithogr., MEMS, MOEMS 2015, 14, 031204.

    Article  Google Scholar 

  110. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. Science 2009, 323, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  111. Jiang, X. Q.; Zhao, R. Y.; Chang, W. Y.; Yin, D. X.; Guo, Y. C.; Wang, W.; Liang, D. H.; Yang, S.; Shi, A. C.; Chen, E. Q. Highly ordered sub-10 nm patterns based on multichain columns of side-chain liquid crystalline polymers. Macromolecules 2019, 52, 5033–5041.

    Article  CAS  Google Scholar 

  112. Zhou, C.; Dolejsi, M.; Xiong, S.; Ren, J.; Ashley, E. M.; Craig, G. S. W.; Nealey, P. F. Combining double patterning with self-assembled block copolymer lamellae to fabricate 10.5 nm full-pitch line/space patterns. Nanotechnology 2019, 30, 455302.

    Article  CAS  PubMed  Google Scholar 

  113. Feng, H.; Dolejsi, M.; Zhu, N.; Yim, S.; Loo, W.; Ma, P.; Zhou, C.; Craig, G. S. W.; Chen, W.; Wan, L.; Ruiz, R.; de Pablo, J. J.; Rowan, S. J.; Nealey, P. F. Optimized design of block copolymers with covarying properties for nanolithography. Nat. Mater. 2022, 21, 1426–1433.

    Article  CAS  PubMed  Google Scholar 

  114. Ruiz, R.; Kang, H.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939.

    Article  CAS  PubMed  Google Scholar 

  115. Bita, I.; Yang, J. K.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939–943.

    Article  CAS  PubMed  Google Scholar 

  116. Son, J. G.; Gwyther, J.; Chang, J. B.; Berggren, K. K.; Manners, I.; Ross, C. A. Highly ordered square arrays from a templated ABC triblock terpolymer. Nano Lett. 2011, 11, 2849–2855.

    Article  CAS  PubMed  Google Scholar 

  117. Choi, J.; Huh, J.; Carter, K. R.; Russell, T. P. Directed self-assembly of block copolymer thin films using minimal topographic patterns. ACS Nano 2016, 10, 7915–7925.

    Article  CAS  PubMed  Google Scholar 

  118. Li, W.; Gu, X. Square patterns formed from the directed self-assembly of block copolymers. Mol. Syst. Des. Eng. 2021, 6, 355–367.

    Article  CAS  Google Scholar 

  119. Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 2015, 135, 57–72.

    Article  CAS  Google Scholar 

  120. Tavakkoli, K. G. A.; Gotrik, K. W.; Hannon, A. F.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 2012, 336, 1294–1298.

    Article  CAS  Google Scholar 

  121. Rahman, A.; Majewski, P. W.; Doerk, G.; Black, C. T.; Yager, K. G. Non-native three-dimensional block copolymer morphologies. Nat. Commun. 2016, 7, 13988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Majewski, P. W.; Rahman, A.; Black, C. T.; Yager, K. G. Arbitrary lattice symmetries via block copolymer nanomeshes. Nat. Commun. 2015, 6, 7448.

    Article  PubMed  Google Scholar 

  123. Jin, C.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. Preferential alignment of incommensurate block copolymer dot arrays forming moire superstructures. ACS Nano 2017, 11, 3237–3246.

    Article  CAS  PubMed  Google Scholar 

  124. Jin, C.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. van der Waals epitaxy of soft twisted bilayers: lattice relaxation and mass density waves. ACS Nano 2020, 14, 13441–13450.

    Article  CAS  PubMed  Google Scholar 

  125. Do, H. W.; Choi, H. K.; Gadelrab, K. R.; Chang, J. B.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K. Directed self-assembly of a two-state block copolymer system. Nano Converg. 2018, 5, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Doerk, G. S.; Stein, A.; Bae, S.; Noack, M. M.; Fukuto, M.; Yager, K. G. Autonomous discovery of emergent morphologies in directed self-assembly of block copolymer blends. Sci. Adv. 2023, 9, eadd3687.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ding, Y.; Gadelrab, K. R.; Mizrahi Rodriguez, K.; Huang, H.; Ross, C. A.; Alexander-Katz, A. Emergent symmetries in block copolymer epitaxy. Nat. Commun. 2019, 10, 2974.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Liu, G.; Petrosko, S. H.; Zheng, Z.; Mirkin, C. A. Evolution of dippen nanolithography (DPN): from molecular patterning to materials discovery. Chem. Rev. 2020, 120, 6009–6047.

    Article  CAS  PubMed  Google Scholar 

  129. Oh, D. K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J. G.; Rho, J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. 2021, 14, 229–251.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rose, M. A.; Bowen, J. J.; Morin, S. A. Emergent soft lithographic tools for the fabrication of functional polymeric microstructures. ChemPhysChem 2019, 20, 909–925.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21925102, 21991132, 92056118 and 22101010). W. B. Z. also thanks the financial support from the National Key R&D Program of China (No. 2018YFB0703702) and Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202006). We thank Dr. Yahong Chen at Peking University for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Bin Zhang or Yu Shao.

Ethics declarations

Wen-Bin Zhang is an editorial board member for Chinese Journal of Polymer Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Biographies

Wen-Bin Zhang received his BS from Peking University in 2004 and his Ph.D. in Polymer Science from the University of Akron in 2010. After his postdoctoral study at Caltech, he started his independent career at Peking University in 2013 and was promoted to a tenured associate professor in 2019 and to full professor in 2020. He aims to integrate the design principles and building blocks of both synthetic and biological polymers for the development of precision macromolecules with unique functions for health-related applications.

Yu Shao obtained his Ph.D. in material science from Donghua University in 2019. He then worked as a Boya postdoctoral fellow and BMS fellow at the College of Chemistry and Molecular Engineering at Peking University in Prof. Wen-Bin Zhang’s group. In 2023, he joined Peking University as a deputy investigator. His main research interests are the design and synthesis of giant molecules and exploring their applications in fields of unconventional phase construction and advanced nanofabrication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Zhang, WB. & Shao, Y. Unconventional 2D Periodic Nanopatterns Based on Block Molecules. Chin J Polym Sci 41, 1508–1524 (2023). https://doi.org/10.1007/s10118-023-3038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3038-8

Keywords

Navigation