Skip to main content
Log in

Porous Shish-Kebab Structure Prepared from Oriented UHMWPE Films by Processing in Supercritical CO2

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

For the first time, a highly crystalline porous shish-kebab structure with a high degree of crystallinity was obtained by using a combination of two methods for the formation of porous polymeric materials. A treatment procedure using supercritical carbon dioxide (scCO2) was carried out for oriented ultrahigh molecular weight polyethylene (UHMWPE) films, which provided special conditions for the crystallization of dissolved UHMWPE macromolecules on the surface of oriented UHMWPE crystals. The prepared porous materials were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The particularity of the obtained porous shish-kebab is the absence of the amorphous phase between lamellar crystals (kebabs). The obtained pores had an oval shape, and they were oriented in the orientation direction of the UHMWPE macromolecules. The pore size ranged from 0.05 µm to 4 µm. Controlling the conditions for the crystallization of the UHMWPE macromolecules using supercritical CO2 gives the possibility to control the size of both lamellar disks and pores formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senra, M. R.; de Fátima Vieira Marques, M. Synthetic polymeric materials for bone replacement. J. Compos. Sci. 2020, 4, 191.

    Article  CAS  Google Scholar 

  2. Maksimkin, A. V.; Senatov, F. S.; Niaza, K.; Dayyoub, T.; Kaloshkin, S. D. Ultra-high molecular weight polyethylene/titanium-hybrid implant for bone-defect replacement. Materials 2020, 13, 3010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ustyugov, A. A.; Sipyagina, N. A.; Malkova, A. N.; Straumal, E. A.; Yurkova, L. L.; Globa, A. A.; Lapshina, M. A.; Chicheva, M. M.; Chaprov, K. D.; Maksimkin, A. V.; Lermontov, S. A. 3D neuronal cell culture modeling based on highly porous ultra-high molecular weight polyethylene. Molecules 2022, 27, 2087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rashidi, S.; Esfahani, J. A.; Karimi, N. Porous materials in building energy technologies—a review of the applications, modelling and experiments. Renew. Sustain. Energy Rev. 2018, 91, 229–247.

    Article  Google Scholar 

  5. Aizawa, T.; Wakui, Y. Correlation between the porosity and permeability of a polymer filter fabricated via CO2-assisted polymer compression. Membranes 2020, 10, 391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li, R.; Gao, P. Nanoporous UHMWPE Membrane separators for safer and high-power-density rechargeable batteries. Glob. Chall. 2017, 1, 1700020.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mathew, D. E.; Gopi, S.; Kathiresan, M.; Rani, G. J.; Thomas, S.; Stephan, A. M. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium-sulfur batteries. Mater. Adv. 2020, 1, 648–657.

    Article  CAS  Google Scholar 

  8. Castejón, P.; Habibi, K.; Saffar, A.; Ajji, A.; Martínez, A. B.; Arencón, D. Polypropylene-based porous membranes: influence of polymer composition, extrusion draw ratio and uniaxial strain. Polymers 2017, 10, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, L.; Wu, Y. K.; Ai, F. F.; Fan, J.; Xia, Z. P.; Liu, Y. Hierarchical porous polyamide 6 by solution foaming: synthesis, characterization and properties. Polymers 2018, 10, 1310.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao, Y. C.; Xu, C.; Zou, L.; Scott, K.; Liu, J. A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly(vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells. J. Power Sources 2015, 294, 691–695.

    Article  CAS  Google Scholar 

  11. Guenet, J. M.; Parmentier, J.; Daniel, C. Porous materials from polyvinylidene fluoride/solvent molecular compounds. Soft Mater. 2011, 9, 280–294.

    Article  CAS  Google Scholar 

  12. Grishin, A. N.; Gutkovich, S. A. Influence of polymerisation conditions on the porosity of suspension polyvinyl chloride (PVC). Int. Polym. Sci. Technol. 2005, 32, 52–54.

    Article  Google Scholar 

  13. Costa, C. M.; Lee, Y.; Kim, J.; Lee, S.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375.

    Article  Google Scholar 

  14. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, 1901689.

    Article  Google Scholar 

  15. Dai, J.; Shi, C.; Li, C.; Shen, X.; Peng, L.; Wu, D.; Sun, D.; Zhang, P.; Zhao, J. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 2016, 9, 3252–3261.

    Article  CAS  Google Scholar 

  16. Siegmann, A.; Raiter, I.; Narkis, M.; Eyerer, P. Effect of powder particle morphology on the sintering behaviour of polymers. J. Mater. Sci. 1986, 21, 1180–1186.

    Article  CAS  Google Scholar 

  17. Barnetson, A.; Hornsby, P. R. Observations on the sintering of ultra-high molecular weight polyethylene (UHMWPE) powders, J. Mater. Sci. Lett. 1995, 14, 80–84.

    Article  CAS  Google Scholar 

  18. Pal, K.; Bag, S.; Pal, S. Development of porous ultra-high molecular weight polyethylene scaffolds for the fabrication of orbital implant. J. Porous Mater. 2008, 15, 53–59.

    Article  CAS  Google Scholar 

  19. Plumlee, K.; Schwartz, C. J. Development of porous UHMWPE morphologies for fixation of gel-based materials. J. Appl. Polym. Sci. 2009, 114, 2555–2563.

    Article  CAS  Google Scholar 

  20. Pal, K.; Bag, S.; Pal, S. Development and coating of porous ultrahigh molecular weight polyethylene plates. Trends in Biomater. Artificial Organs 2005, 19, 39–45.

    Google Scholar 

  21. Li, L.; de Jeu, W. H. Shear-induced smectic ordering in the melt of isotactic polypropylene. Phys. Rev. Lett. 2004, 92, 075506.

    Article  PubMed  Google Scholar 

  22. Hu, W.; Frenkel, D.; Mathot, V. B. F. Simulation of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules 2002, 5, 7172–7174.

    Article  Google Scholar 

  23. Pennings, A. J.; van der Mark, J. M. A. A.; Kiel, A. M. Hydrodynamically induced crystallization of polymers from solution. Kolloid-Zeitschrift und Zeitschrift für Polymere 1970, 237, 336–358.

    Article  CAS  Google Scholar 

  24. Bashir, Z.; Odell, J. A.; Keller, A. High modulus filaments of polyethylene with lamellar structure by melt processing; the role of the high molecular weight component. J. Mater. Sci. 1984, 19, 3713–3725.

    Article  CAS  Google Scholar 

  25. Bashir, Z.; Odell, J. A.; Keller, A. Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion. J. Mater. Sci. 1986, 21, 3993–4002.

    Article  CAS  Google Scholar 

  26. Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766–4776.

    Article  CAS  Google Scholar 

  27. Zhao, C.; He, J.; Li, J.; Tong, J.; Xiong, J. Preparation and properties of UHMWPE microporous membrane for lithium ion battery diaphragm. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012089.

    Article  Google Scholar 

  28. Li, J.; Li, R.; Gu, Q.; Zhang, Q.; Yu, T. X.; Gao, P. Flexible ultra strong 100-nm polyethylene membranes with polygonal pore structures. Appl. Phys. 2019.

  29. Geng, L.; Li, L.; Mi, H.; Chen, B.; Sharma, P.; Ma, H.; Hsiao, B. S.; Peng, X.; Kuang, T. Superior impact toughness and excellent storage modulus of poly(lactic acid) foams reinforced by shish-kebab nanoporous structure. ACS Appl. Mater. Interfaces 2017, 9, 21071–21076.

    Article  PubMed  CAS  Google Scholar 

  30. Li, L.; Li, W.; Geng, L.; Chen, B.; Mi, H.; Hong, K.; Peng, X.; Kuang, T. Formation of stretched fibrils and nanohybrid shish-kebabs in isotactic polypropylene-based nanocomposites by application of a dynamic oscillatory shear. Chem. Eng. J. 2018, 348, 546–556.

    Article  CAS  Google Scholar 

  31. Wang, Z.; Mao, Y.; Li, X.; Li, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W; S. Hsiao, B. S. The influence of ethyl branch on formation of shish-kebab crystals in bimodal polyethylene under shear at low temperature. Chinese. J. Polym. Sci. 2021, 39, 1050–1058.

    Article  CAS  Google Scholar 

  32. Kovalenko, A.; Zimny, K.; Mascaro, B.; Brunet, T.; Mondain-Monval, O. Tailoring of the porous structure of soft emulsion-templated polymer materials. Soft Matter 2016, 12, 5154–5163.

    Article  PubMed  CAS  Google Scholar 

  33. Martina, A. D.; Hilborn, J. G.; Kiefer, J.; Hedrick, J. L.; Srinivasan, S.; Miller, R. D. Siloxane elastomer foams. ACS Symposium Series. Washington, DC: American Chemical Society 1997, 669, 8–25. https://doi.org/10.1021/bk-1997-0669.ch002

    Google Scholar 

  34. Jin, Y.; Kumar, R.; Poncelet, O.; Mondain-Monval, O.; Brunet, T. Flat acoustics with soft gradient-index metasurfaces. Nat. Commun. 2019, 10, 143–149.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pennings, A. J.; Kiel, A. M. Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution. Kolloid-Zeitschrift Und Zeitschrift Für Polym. 1965, 205, 160–162.

    Article  CAS  Google Scholar 

  36. Lermontov, S. A.; Maksimkin, A. V.; Sipyagina, N. A.; Malkova, A. N.; Kolesnikov, E. A.; Zadorozhnyy, M. Y.; Straumal, E. A.; Dayyoub, T. Ultra-high molecular weight polyethylene with hybrid porous structure. Polymer 2020, 202, 122744.

    Article  CAS  Google Scholar 

  37. Lermontov, S. A.; Malkova, A. N.; Sipyagina, N. A.; Straumal, E. A.; Maksimkin, A. V.; Kolesnikov, E. A.; Senatov, F. S. Properties of highly porous aerogels prepared from ultra-high molecular weight polyethylene. Polymer 2019, 182, 121824.

    Article  Google Scholar 

  38. Maksimkin, A. V.; Kharitonov, A. P.; Nematulloev, S. G.; Kaloshkin, S. D.; Gorshenkov, M. V.; Chukov, D. I.; Shchetinin, I. V. Fabrication of oriented UHMWPE films using low solvent concentration. Mater. Des. 2017, 115, 133–137.

    Article  CAS  Google Scholar 

  39. Dayyoub, T.; Maksimkin, A.V.; Kaloshkin, S.; Kolesnikov, E.; Chukov, D.; Dyachkova, T.P.; Gutnik, I. The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers 2019, 11, 23.

    Article  Google Scholar 

  40. Hoffman, J. D.; Frolen, L. J.; Ross, G. S.; Lauritzen, J. I. On the growth rate of spherulites and axialites from the melt in polyethylene fractions: regime I and regime II crystallization. J. Res. Natl. Bureau Stand. Sect. A 1975, 79A, 671.

    Article  CAS  Google Scholar 

  41. Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra, P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788.

    Article  CAS  Google Scholar 

  42. Liu, K. J.; Zhang, J.; Liu, H.; Qian, X. Y.; Zhang, Y.; Wang, T.; Shen, K. Z. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field. Express Polym. Lett. 2013, 7, 355–364.

    Article  CAS  Google Scholar 

  43. Yi, L.; Luo, S.; Shen, J.; Guo, S.; Sue, H. J. Bioinspired polylactide based on the multilayer assembly of shish-kebab structure: a strategy for achieving balanced performances. ACS Sustainable Chem. Eng. 2017, 5, 3063–3073.

    Article  CAS  Google Scholar 

  44. Nitta, K. H. On the orientation-induced crystallization of polymers. Polymers 2016, 8, 229.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kumaraswamy, G. Crystallization of polymers from stressed melts. J. Macromol. Sci. C 2005, 45, 375–397.

    Article  Google Scholar 

  46. An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q.; Wang, Z. The effect of chitin nanocrystal on the structural transition of shish-kebab to fibrillar crystals of ultra-high molecular weight polyethylene/chitin nanocrystal fibers during hot-stretching process. Eur. Polym. J. 2017, 96, 463–473.

    Article  CAS  Google Scholar 

  47. Strobl, G. Colloquium: laws controlling crystallization and melting in bulk polymers. Rev. Mod. Phys. 2009, 81, 1287–1300.

    Article  CAS  Google Scholar 

  48. Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S. Flow-induced shishkebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587–8623.

    Article  CAS  Google Scholar 

  49. Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S. The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 786–79.

    Article  CAS  Google Scholar 

  50. Zhao, R.; Chu, Z.; Ma, Z. Flow-induced crystallization in polyethylene: effect of flow time on development of shish-kebab. Polymers 2020, 12, 2571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zuo, F.; Keum, J.; Yang, L.; Somani, R. H.; Hsiao, B. S. Thermal stability of shear-induced shish-kebab precursor structure from high molecular weight polyethylene chains. Macromolecules 2006, 39, 2209–2218.

    Article  CAS  Google Scholar 

  52. Jeon, M. Y.; Kim, C. K. Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure. J. Membr. Sci. 2007, 300, 172–181.

    Article  CAS  Google Scholar 

  53. Flaim, T. D.; Wang, Y.; Mercado, R. High-refractive-index polymer coatings for optoelectronics applications. Advances in Optical Thin Films 2004, 1–12. Doi:https://doi.org/10.1117/12.513363.

Download references

Acknowledgments

This work was financially supported by the Academic leadership program Priority 2030 proposed by Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University). The preparation and modification of UHMWPE samples were financially supported by the Russian Science Foundation (No. 18-13-00145), SEM investigation was supported by the State Assignment (No. 0090-2019-0002, IPAC RAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey A. Lermontov or Tarek Dayyoub.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermontov, S.A., Maksimkin, A.V., Sipyagina, N.A. et al. Porous Shish-Kebab Structure Prepared from Oriented UHMWPE Films by Processing in Supercritical CO2. Chin J Polym Sci 42, 97–104 (2024). https://doi.org/10.1007/s10118-023-3036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3036-x

Keywords

Navigation