Skip to main content
Log in

Access to High-Molecular-Weight Polyethylenes through High Temperature Ethylene Polymerization Catalysed by Ethylene-Bridged ansa-(3-R-Cyclopentadienyl)(Fluorenyl) Zirconocene Complexes

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of C1-symmetric ethylene-bridged ansa-(3-R-cyclopentadienyl)(fluorenyl) metallocene complexes (Zr: 1–5; Hf: 6) have been synthesized, characterized and investigated as catalyst precursors for the high temperature ethylene polymerization. Using methylaluminoxane (MAO) as the cocatalyst, zirconium complexes 1–5 bearing a bulky substituent on the 3-position of the cyclopendienyl ring showed high catalytic activities up to 1.48×107 gPE·molZr−1·h−1 toward the polymerization of ethylene and afforded polyethylenes with high molecular weights (1.49×105−6.31×105 g/mol), meanwhile exhibting great thermal stability at high temperatures up to 120 °C together with a long catalytic life time up to 2 h. By adopting low Al/Zr ratios, such as 125, polyethylenes with ultra high molecular weights up to 2.86×106 g/mol were obtained. It is worthy of noting that zirconium complexes 1–4 bearing a substituent with an aryl pendant showed temperature-dependent activities, which increased rapidly with the increase of polymerization temperature, thus weak interaction of the pendent aryl group with the cationic active center is proposed to account for the very low activities displayed at low temperatures. In contrast to zirconocene complexes 1–5, hafnocene complex 6 only displayed very low catalytic activities toward the polymerization of ethylene and afforded polyethylenes with molecular weights ten times smaller than those obtained by zirconocene complexes 1–5. Zirconocene complexes 1–5 were also able to catalyse the polymerization of propylene at high temperatures, but only afforded waxes with low molecular weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H. G.; Köppl, A. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem. Rev. 2000, 100, 1205–1221.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, E. Y. X.; Mark, T. J. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem. Rev. 2000, 100, 1391–1434.

    Article  PubMed  CAS  Google Scholar 

  3. Angermund, K.; Fink, G.; Jensen, V. R.; Kleinschmidt, R. Toward quantitative prediction of stereospecificity of metallocene-based catalysts for α-olefin polymerization. Chem. Rev. 2000, 100, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  4. Janiak, C. Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coord. Chem. Rev. 2006, 250, 66–94.

    Article  CAS  Google Scholar 

  5. Alt, H. G.; Samuel, E. Fluorenyl complexes of zirconium and hafnium as catalysts for olefin polymerization. Chem. Soc. Rev. 1998, 27, 323–329.

    Article  CAS  Google Scholar 

  6. Decker, P. J. W.; Hessen, B.; Teuben, J. H. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem. Int. Ed. 2001, 40, 2516–2519.

    Article  Google Scholar 

  7. Huang, J.; Wu, T.; Qian, Y. Ethylene trimerization with a half-sandwich titanium complex bearing a pendant thienyl group. Chem. Commun. 2003, 22, 2816–2817.

    Article  Google Scholar 

  8. Zhang, Y.; Ma, H.; Huang, J. Highly selective ethylene trimerization catalyzed by half-sandwich indenyl titanium complexes with pendant arene groups and MAO. J. Mol. Catal. A: Chem. 2013, 373, 85–95.

    Article  CAS  Google Scholar 

  9. Decker, P. J. W.; Hessen, B.; Teuben, J. H. Catalytic trimerization of ethene with highly active cyclopentadienyl-arene titanium catalysts. Organometallics 2002, 21, 5122–5135.

    Article  Google Scholar 

  10. Hessen, B. Monocyclopentadienyl titanium catalysts: ethene polymerisation versus ethene trimerisation. J. Mol. Catal. A: Chem. 2004, 213, 129–135.

    Article  CAS  Google Scholar 

  11. Wang, C.; Huang, J. Styrene polymerization with half-sandwich titanium complexes bearing pendent cyclo-alkenyl groups. Eur. Polym. J. 2006, 42, 3032–3040.

    Article  CAS  Google Scholar 

  12. Pinheiro, A. C.; Virgili, A. H.; Roisnel, T.; Kirillov, E.; Carpentier, J.-F; Casagrande, Jr. O. L. Ni(II) complexes bearing pyrrolide-imine ligands with pendant N-, O- and S-donor groups: synthesis, structural characterization and use in ethylene oligomerization. RSC Adv. 2015, 5, 91524–91531.

    Article  CAS  Google Scholar 

  13. Boudier, A.; Breuil, P.-A. R.; Megna, L.; Olivier-Bourbigou, H. Nickel(II) complexes with imino-imidazole chelating ligands bearing pendant donor groups (SR, OR, NR2, PR2) as precatalysts in ethylene oligomerization. J. Organomet. Chem. 2012, 718, 31–37.

    Article  CAS  Google Scholar 

  14. Ulbrich, A. H. D. P. S.; Bergamo, A. L.; Casagrande, Jr. O. L. Oligomerization of ethylene using tridentate nickel catalysts bearing ether-pyrazol ligands with pendant O- and S-donor groups. Catal. Commun. 2011, 16, 245–249.

    Article  CAS  Google Scholar 

  15. Song, K.; Gao, H.; Liu, F.; Pan, J.; Guo, L.; Zai, S.; Wu, Q. Syntheses, structures, and catalytic ethylene oligomerization behaviors of bis(phosphanyl)aminenickel(II) complexes containing N-functionalized pendant groups. Eur. Inorg. Chem. 2009, 20, 3016–3024.

    Article  Google Scholar 

  16. Bahuleyan, B. K.; Ahn, I. Y.; Appukuttan, V.; Lee, S. H.; Ha, C.; Kim, I. Ethylene oligomerization by tridentate cobalt complexes bearing pendant donor modified α-diimine ligands. Macromol. Res. 2010, 18, 701–704.

    Article  CAS  Google Scholar 

  17. Hou, X.; Cheng, Y.; Zhang, P.; Jin, G. Olefin polymerization behavior of the cyclopentadienyl cobalt complexes bearing pendant sulfur or oxygen ligands. Inorg. Chem. Commun. 2006, 9, 423–425.

    Article  CAS  Google Scholar 

  18. Small, B. L.; Rios, R.; Fernandez, E. R.; Gerlach, D. L.; Halfen, J. A.; Carney, M. J. Oligomerization of ethylene using new tridentate iron catalysts bearing α-diimine ligands with pendant S and P donors. Organometallics 2010, 29, 6723–6731.

    Article  CAS  Google Scholar 

  19. Small, B. L.; Rios, R.; Fernandez, E. R.; Carney, M. J. Oligomerization of ethylene using new iron catalysts bearing pendant donor modified α-diimine ligands. Organometallics 2007, 26, 1744–1749.

    Article  CAS  Google Scholar 

  20. Wallenhorst, C.; Kehr, G.; Luftmann, H.; Fröhlich, R.; Erker, G. Bis(iminoethyl)pyridine systems with a pendant alkenyl group. Part A: cobalt and iron complexes and their catalytic behavior. Organometallics 2008, 27, 6547–6556.

    Article  CAS  Google Scholar 

  21. Weng, Z.; Teo, S.; Hor, A. Chromium(III) catalysed ethylene tetramerization promoted by bis(phosphino)amines with an N-functionalized pendant. Dalton Trans. 2007, 3493–3498.

  22. Son, K.; Jöge, F.; Waymouth, R. M. Copolymerization of styrene and ethylene at high temperature with titanocenes containing a pendant amine donor. Maromolecules 2008, 41, 9663–9668.

    Article  CAS  Google Scholar 

  23. Elkin, T.; Botoshansky, M.; Waymouth, R. M.; Eisen, M. Titanium bis(amidinates) bearing electron donating pendant arms as catalysts for stereospecific polymerization of propylene. Organometallics 2014, 33, 840–843.

    Article  CAS  Google Scholar 

  24. Homden, D.; Redshaw, C.; Wright, J. A.; Hughes, D. L.; Elsegood, M. R. J. Early transition metal complexes bearing a C-capped tris(phenolate) ligand incorporating a pendant imine arm: synthesis, structure, and ethylene polymerization behavior. Inorg. Chem. 2008, 47, 5799–5814.

    Article  PubMed  CAS  Google Scholar 

  25. Suttil, J. A.; McGuinness, D. S.; Evans, S. J. Arene substituted cyclopentadienyl complexes of Zr and Hf: preparation and evaluation as catalysts for ethylene trimerization. Dalton Trans. 2010, 39, 5278–5285.

    Article  PubMed  CAS  Google Scholar 

  26. Li, A.; Xiao, W.; Ma, H.; Huang, J. Ethylene polymerization with long-lifetime monopendant thienyl-substituted group 4 metallocenes. Appl. Organomet. Chem. 2014, 28, 495–503.

    Article  CAS  Google Scholar 

  27. Licht, A. I.; Alt, H. G. Synthesis of novel metallacyclic zirconocene complexes from ω-alkenyl-functionalized zirconocene dichloride complexes and their use in the α-olefin polymerization. J. Organomet. Chem. 2002, 648, 134–148.

    Article  CAS  Google Scholar 

  28. Ceballos-Torres, J.; Gómez-Ruiz, S.; Fajardo, M.; Ana, B.; Pinar, A. B. Prashar S. Synthesis and characterization of alkenyl and alkyl substituted group 4 metallocene dichloride complexes: Applications in ethylene polymerization. J. Organomet. Chem. 2019, 899, 120890.

    Article  Google Scholar 

  29. Lamač, M.; Horáček, M.; Kubišta, J.; Pinkas, J. Intramolecular activation of pendant alkenyl group as a tool for modification of the zirconocene framework. Inorg. Chim. Acta 2011, 373, 291–294.

    Article  Google Scholar 

  30. van der Zeijden, A. A.H.; Mattheis, C. Titanocenes and zirconocenes with (chiral) O-functionalized side chains on the Cp ring. J. Organomet. Chem. 1998, 555, 5.

    Article  CAS  Google Scholar 

  31. Kirillov, E.; Marquet, N.; Razavi, A.; Belia, V.; Hampel, F. Roisnel, T.; Gladysz, J. A.; Carpentier, J. F. New C1-symmetric Ph2C-bridged multisubstituted ansa- zirconocenes for highly isospecific propylene polymerization: synthetic approach via activated fulvenes. Organometallics 2010, 29, 5073–5082.

    Article  CAS  Google Scholar 

  32. Zhang, L.; Zhang, B.; Ma, H. Ethylene-bridged indenyl-fluorenyl metallocene complexes for efficient preparation of allyl-terminated propylene oligomers and polymers via selective methyl transfer. Chinese J. Polym. Sci. 2019, 37, 578–590.

    Article  CAS  Google Scholar 

  33. Miller, S. A.; Bercaw, J. E. Highly stereoregular syndiotactic polypropylene formation with metallocene catalysts via influence of distal ligand substituents. Organometallics 2004, 23, 1777–1789.

    Article  CAS  Google Scholar 

  34. Huang, W.; Wang, Y.; Ma, H.; Huang, J. Highly selective propylene dimerization catalyzed by C1-symmetric zirconocene complexes. Appl. Organomet. Chem. 2014, 6, 413–423.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21274041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Ma or Jiling Huang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3034_MOESM1_ESM.pdf

Access to High-Molecular-Weight Polyethylenes through High Temperature Ethylene Polymerization Catalysed by Ethylene-Bridged ansa-(3-R-Cyclopentadienyl)(Fluorenyl) Zirconocene Complexes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ma, H. & Huang, J. Access to High-Molecular-Weight Polyethylenes through High Temperature Ethylene Polymerization Catalysed by Ethylene-Bridged ansa-(3-R-Cyclopentadienyl)(Fluorenyl) Zirconocene Complexes. Chin J Polym Sci 42, 42–51 (2024). https://doi.org/10.1007/s10118-023-3034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3034-z

Keywords

Navigation