Skip to main content
Log in

Significantly Enhanced Melt Memory Effect of Metallocene-made Isotactic Polypropylene Containing Talc

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene (M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 °C to 174 °C, resulting in a substantial widening of the temperature range of Domain IIa from 1 °C to 14 °C. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sangroniz, L.; Cavallo, D.; Müller, A. J. Self-nucleation effects on polymer crystallization. Macromolecules 2020, 53, 4581–4604.

    Article  CAS  Google Scholar 

  2. Fillon, B.; Wittmann, J.; Lotz, B.; Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1383–1393.

    Article  CAS  Google Scholar 

  3. Sangroniz, L.; Alamo, R.; Cavallo, D.; Santamaría, A.; Müller, A.; Alegría, A. Differences between isotropic and self-nucleated PCL melts detected by dielectric experiments. Macromolecules 2018, 51, 3663–3671.

    Article  CAS  Google Scholar 

  4. Li, X.; Ma, Z.; Su, F.; Tian, N.; Ji, Y.; Lu, J.; Wang, Z.; Li, L. New understanding on the memory effect of crystallized iPP. Chinese J. Polym. Sci. 2014, 32, 1224–1233.

    Article  CAS  Google Scholar 

  5. Sangroniz, L.; Cavallo, D.; Santamaria, A.; Müller, A. J.; Alamo, R. G. Thermorheologically complex self-seeded melts of propylene-ethylene copolymers. Macromolecules 2017, 50, 642–651.

    Article  CAS  Google Scholar 

  6. Mamun, A.; Chen, X.; Alamo, R. G. Interplay between a strong memory effect of crystallization and liquid-liquid phase separation in melts of broadly distributed ethylene-1-alkene copolymers. Macromolecules 2014, 47, 7958–7970.

    Article  CAS  Google Scholar 

  7. Gao, H.; Vadlamudi, M.; Alamo, R. G.; Hu, W. Monte Carlo simulations of strong memory effect of crystallization in random copolymers. Macromolecules 2013, 46, 6498–6506.

    Article  CAS  Google Scholar 

  8. Liu, X.; Wang, Y.; Wang, Z.; Cavallo, D.; Müller, A. J.; Zhu, P.; Zhao, Y.; Dong, X.; Wang, D. The origin of memory effects in the crystallization of polyamides: role of hydrogen bonding. Polymer 2020, 188, 122117.

    Article  CAS  Google Scholar 

  9. Lorenzo, A. T.; Arnal, M. L.; Sanchez, J. J.; Müller, A. J. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1738–1750.

    Article  CAS  Google Scholar 

  10. Marxsen, S. F.; Alamo, R. G. Melt-memory of polyethylenes with halogen substitution: random vs. precise placement. Polymer 2019, 168, 168–177.

    Article  CAS  Google Scholar 

  11. Reid, B. O.; Vadlamudi, M.; Mamun, A.; Janani, H.; Gao, H.; Hu, W.; Alamo, R. G. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 2013, 46, 6485–6497.

    Article  CAS  Google Scholar 

  12. Luo, C.; Sommer, J. U. Frozen topology: entanglements control nucleation and crystallization in polymers. Phys. Rev. Lett. 2014, 112, 195702.

    Article  PubMed  Google Scholar 

  13. Colonna, S.; Pérez-Camargo, R. A.; Chen, H.; Liu, G.; Wang, D.; Müller, A. J.; Saracco, G.; Fina, A. Supernucleation and orientation of poly(butylene terephthalate) crystals in nanocomposites containing highly reduced graphene oxide. Macromolecules 2017, 50, 9380–9393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vega, J. F.; Da Silva, Y.; Vicente-Alique, E.; Nunez-Ramirez, R.; Trujillo, M.; Arnal, M. L.; Müller, A. J.; Dubois, P.; Martinez-Salazar, J. Influence of chain branching and molecular weight on melt rheology and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 2014, 47, 5668–5681.

    Article  CAS  Google Scholar 

  15. Maiz, J.; Fernandez-d’Arlas, B.; Li, X.; Balko, J.; Poeselt, E.; Dabbous, R.; Thurn-Albrecht, T.; Müller, A. J. Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane. Polymer 2019, 180, 121676.

    Article  CAS  Google Scholar 

  16. Liu, P.; Xue, Y.; Men, Y. Melt memory effect beyond the equilibrium melting point in commercial isotactic polybutene-1. Ind. Eng. Chem. Res. 2019, 58, 5472–5478.

    Article  CAS  Google Scholar 

  17. Yue, Y.; Sha, X.; Wang, F.; Gao, Y.; Zhang, L.; Wang, X.; Feng, J. The effect of β-nucleating agent on the self-nucleation of isotactic polypropylene. Polymer 2021, 229, 124009.

    Article  CAS  Google Scholar 

  18. Sun, H.; Wang, L.; Yi, J.; Wang, F.; Gao, Y.; Sha, X.; Feng, J. The influence of melt temperature on the crystal orientation of polypropylene containing talc. Polymer 2022, 256, 125179.

    Article  CAS  Google Scholar 

  19. Yue, Y.; Sha, X.; Wang, F.; Gao, Y.; Zhang, L.; Zhu, Y.; Wang, X.; Feng, J. Non-negligible effect of additives in the application of successive self-nucleation and annealing fractionation for microstructure characterization of matrix resin in additive-containing samples. ACS Appl. Polym. Mater. 2021, 3, 4634–4644.

    Article  CAS  Google Scholar 

  20. Wang, X.; Yi, J.; Wang, L.; Feng, J. Comparison of the melt memory effects in matched fractions segregated from Ziegler-Natta and metallocene-made isotactic polypropylene with similar total defect content. Polymer 2021, 230, 124060.

    Article  CAS  Google Scholar 

  21. Zhu, X.; Yan, D.; Yao, H.; Zhu, P. In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly (propylene). Macromol. Rapid Commun. 2000, 21, 354–357.

    Article  CAS  Google Scholar 

  22. Dai, P. S.; Cebe, P.; Capel, M. Thermal analysis and X-ray scattering study of metallocene isotactic polypropylene prepared by partial melting. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1644–1660.

    Article  CAS  Google Scholar 

  23. De Rosa, C.; Auriemma, F.; Spera, C.; Talarico, G.; Tarallo, O. Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: the role of the distribution of defects in the polymer chains. Macromolecules 2004, 37, 1441–1454.

    Article  CAS  Google Scholar 

  24. Chang, H.; Zhang, Y.; Ren, S.; Dang, X.; Zhang, L.; Li, H.; Hu, Y. Study on the sequence length distribution of polypropylene by the successive self-nucleation and annealing (SSA) calorimetric technique. Polym. Chem. 2012, 3, 2909–2919.

    Article  CAS  Google Scholar 

  25. Auriemma, F.; De Rosa, C. Crystallization of metallocene-made isotactic polypropylene: Disordered modifications intermediate between the α and γ forms. Macromolecules 2002, 35, 9057–9068.

    Article  CAS  Google Scholar 

  26. Jones, A. T.; Aizlewood, J. M.; Beckett, D. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158.

    Article  Google Scholar 

  27. Foresta, T.; Piccarolo, S.; Goldbeck-Wood, G. Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates. Polymer 2001, 42, 1167–1176.

    Article  CAS  Google Scholar 

  28. Choi, W. J.; Kim, S. C. Effects of talc orientation and non-isothermal crystallization rate on crystal orientation of polypropylene in injection-molded polypropylene/ethylenepropylene rubber/talc blends. Polymer 2004, 45, 2393–2401.

    Article  CAS  Google Scholar 

  29. Branciforti, M. C.; Oliveira, C. A.; De Sousa, J. A. Molecular orientation, crystallinity, and flexural modulus correlations in injection molded polypropylene/talc composites. Polym. Adv. Technol. 2010, 21, 322–330.

    Article  CAS  Google Scholar 

  30. Xu, J.; Ma, Y.; Hu, W.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding. Nat. Mater. 2009, 8, 348–353.

    Article  PubMed  CAS  Google Scholar 

  31. Rybnikář, F. Orientation in composite of polypropylene and talc. J. Appl. Polym. Sci. 1989, 38, 1479–1490.

    Article  Google Scholar 

  32. Flieger, A. K.; Schulz, M.; Thurn-Albrecht, T. Interface-induced crystallization of polycaprolactone on graphite via first-order prewetting of the crystalline phase. Macromolecules 2017, 51, 189–194.

    Article  Google Scholar 

  33. Dolynchuk, O.; Tariq, M.; Thurn-Albrecht, T. Phenomenological theory of First-order prefreezing. J. Phys. Chem. Lett. 2019, 10, 1942–1946.

    Article  PubMed  CAS  Google Scholar 

  34. Tariq, M.; Dolynchuk, O.; Thurn-Albrecht, T. Effect of substrate interaction on thermodynamics of prefreezing. Macromolecules 2019, 52, 9140–9148.

    Article  CAS  Google Scholar 

  35. Löhmann, A. K.; Henze, T.; Thurn-Albrecht, T. Direct observation of prefreezing at the interface melt-solid in polymer crystallization. Proc. Natl. Acad. Sci. 2014, 111, 17368–17372.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma, L.; Zhou, Z.; Zhang, J.; Sun, X.; Li, H.; Zhang, J.; Yan, S. Temperature-dependent recrystallization morphologies of carbon-coated isotactic polypropylene highly oriented thin films. Macromolecules 2017, 50, 3582–3589.

    Article  CAS  Google Scholar 

  37. Ma, L.; Zhang, J.; Memon, M. A.; Sun, X.; Li, H.; Yan, S. Melt recrystallization behavior of carbon-coated melt-drawn oriented isotactic polypropylene thin films. Polym. Chem. 2015, 6, 7524–7532.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973037 and 52173056) and PetroChina Company Limited, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Chun Feng.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HW., Wang, FS., Gao, Y. et al. Significantly Enhanced Melt Memory Effect of Metallocene-made Isotactic Polypropylene Containing Talc. Chin J Polym Sci 42, 213–222 (2024). https://doi.org/10.1007/s10118-023-3027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3027-y

Keywords

Navigation