Skip to main content
Log in

Vanadium(V) Complexes Containing Unsymmetrical N-Heterocyclic Carbene Ligands: Highly Efficient Synthesis and Catalytic Behavior towards Ethylene/Propylene Copolymerization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The highly efficient method has been developed for the synthesis of NHC-VOCl3 containing symmetrical or unsymmetrical N-heterocyclic carbene (NHC) ligands by the transmetallation reaction of NHG·AgCl with VOCl3. The total isolated yield of VOCl3[1,3-(2,4,6-Me3C6H2)2(NCH=)2C:] (V4′) reached 86% by transmetallation reaction, which is much higher than that (48%) by direct coordination method. This methodology has also been used to synthesize the novel vanadium complexes containing unsymmetrical NHC ligands of VOCl3[PhCH2NCH=CHNR)C:] (V5′, R = 2,4,6-Me3C6H2; V6′, R = 2,4-Me2-6-Ph-C6H2; V7′, R = 2,6-iPr2-C6H3) with high yield, which could not be obtained by direct coordination method. The catalytic activity and copolymerization ability would be improved by introducing unsymmetrical NHC ligands due to their less steric bulky effect. The vanadium complex V5′ containing unsymmetrical NHC ligand exhibits higher catalytic activity (3.7×105 gcopolymer·mol−1 of V·h−1) than that of V4′ containing symmetrical NHC ligand. Moreover, the higher propylene incorporation ratio (45.6 mol%) in the copolymers of ethylene with propylene could be obtained by using V5′ than that (39.9%) by using V4′. The results would provide a highly efficient strategy for the synthesis of early transition metal complexes containing versitile NHC ligands, affording the catalyst with both high catalytic activity and copolymerization ability for the synthesis of high performance polyolefin elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–315.

    Article  PubMed  CAS  Google Scholar 

  2. Nomura, K.; Zhang, S. Design of vanadium complex catalysts for precise olefin polymerization. Chem. Rev. 2011, 111, 2342–2362.

    Article  PubMed  CAS  Google Scholar 

  3. Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI Catalysts for olefin polymerization—a comprehensive treatment. Chem. Rev. 2011, 111, 2363–2449.

    Article  PubMed  CAS  Google Scholar 

  4. Baier, M. C.; Zuideveld, M. A.; Mecking, S. Post-metallocenes in the industrial production of polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744.

    Article  CAS  Google Scholar 

  5. Zhang, S.; Zhang, Z. Q.; Wu, Y. X. Progress in advanced catalyst and their use in ethylene/propylene copolymerization. Chin. Sci. Bull. 2018, 63, 3530–3545.

    Article  Google Scholar 

  6. Zhang, S.; Wu, Y. X. Controlled olefin polymerization and its macromolecular engineering. Sci. Sin. Chim. 2018, 48, 590–600.

    Article  Google Scholar 

  7. Phillips, A. M. F.; Suo, H. Y.; da Silva, M. D. C. G.; Pombeiro, A. J. L.; Sun, W. H. Recent developments in vanadium-catalyzed olefin coordination polymerization. Coord. Chem. Rev. 2020, 416, e213332.

    Article  Google Scholar 

  8. Yuan, S. F.; Yan, Y.; Solan, G. A.; Ma, Y. P.; Sun, W. H. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene. Coord. Chem. Rev. 2020, 411, e213254.

    Article  Google Scholar 

  9. Chen, J. Z.; Gao, Y. S.; Marks, T. J. Early transition metal catalysis for olefin-polar monomer copolymerization. Angew. Chem. Int. Ed. 2020, 59, 14726–14735.

    Article  CAS  Google Scholar 

  10. Zhang, S.; Zhang, X. Y.; Wang, Y. C. Wu, Y. X. Progress in vanadium complex catalysts and their catalytic behavior toward copolymerization of ethylene with α-olefins. Chin. Sci. Bull 2021, 66, 3849–3865.

    Article  Google Scholar 

  11. Bravaya, N. M.; Faingol’d, E. E.; Sanginov E. A.; Badamshina E. R. Homogeneous group IVB catalysts of new generations for synthesis of ethylene-propylene-diene rubbers: a mini-review. Catalysts 2022, 12, e704.

    Article  Google Scholar 

  12. Ravishankar, P. S. Treatise on EPDM. Rubber Chem. Technol. 2012, 85, 327–349.

    Article  CAS  Google Scholar 

  13. Redshaw, C.; Warford, L.; Elsegood, M. R. J.; Dale, S. H. Vanadyl complexes bearing bi- and triphenolate chelate ligands: highly active ethylene polymerisation procatalysts. Chem. Commun. 2004, 1954–1955.

  14. Redshaw, C.; Rowan, M. A.; Homden, D. M.; Dale, S. H.; Elesgood, M. R. J.; Matsui, S.; Matsuura, S. Vanadyl C and N-capped tris (phenolate) complexes: influence of pro-catalyst geometry on catalytic activity. Chem. Commun. 2006, 3329–3331.

  15. Redshaw, C.; Walton, M. J.; Elsegood, M. R. J.; Prior, T. J.; Michiue, K. Vanadium(V) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-) polymerization capability. RSC Adv. 2015, 5, 89783–89796.

    Article  CAS  Google Scholar 

  16. Redshaw, C.; Rowan, M. A.; Warford, L.; Homden, D. M.; Arbaoui, A.; Elsegood, M. R. J.; Dale, S. H.; Yamato, T.; Casas, C. P.; Matsui, S.; Matsuura, S. Oxo- and imidovanadium complexes incorporating methylene- and dimethyleneoxa-bridged calix[3]- and -[4]arenes: synthesis, structures and ethylene polymerisation catalysis. Chem. Eur. J. 2007, 13, 1090–1107.

    Article  PubMed  CAS  Google Scholar 

  17. Redshaw, C.; Walton, M.; Michiue, K.; Chao, Y.; Walton, A.; Elo, P.; Sumerin, V.; Jiang, C.; Elsegood, M. Vanadyl calix[6]arene complexes: synthesis, structural studies and ethylene homo-(co-) polymerization capability. Dalton Trans. 2015, 44, 12292–12303.

    Article  PubMed  CAS  Google Scholar 

  18. Redshaw, C.; Walton, M. J.; Lee, D. S.; Jiang, C.; Elscood, M. R. J.; Michiue, K. Vanadium(V) oxo and imido calix[8] arene complexes: synthesis, structural studies, and ethylene homo/copolymerisation capability. Chem. Eur. J. 2015, 21, 5199–5210.

    Article  PubMed  CAS  Google Scholar 

  19. Zanchin, G.; Bertini, F.; Vendier, L.; Ricci, G.; Lorber C.; Leone, G. Copolymerization of ethylene with propylene and higher α-olefins catalyzed by (imido)vanadium(IV) dichloride complexes. Polym. Chem. 2019, 10, 6200–6216.

    Article  CAS  Google Scholar 

  20. Desmangles, N.; Gambarotta, S.; Bensimon, C.; Davis, S.; Zahalka, H. Preparation and characterization of (R2N)2VCl2 [R= Cy, i-Pr] and its activity as olefin polymerization catalyst. J. Organomet. Chem. 1998, 562, 53–60.

    Article  CAS  Google Scholar 

  21. Cuomo, C.; Milione, S.; Grassi, A. Olefin polymerization catalyzed by amide vanadium(IV) complexes: the stereo- and regiochemistry of propylene insertion. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3279–3289.

    Article  CAS  Google Scholar 

  22. Hagen, H.; Boersma, J.; Lutz, M.; Spek, A. L.; Koten, G. V. Vanadium (III) and -(IV) complexes with O, N-chelating aminophenolate ligands: synthesis, characterization and activity in ethene/propene copolymerization. Eur. J. Inorg. Chem. 2001, 117–123.

  23. Mu, J. S.; Li, Y. S. Measurement and control of the microstructure of ethylene-propylene copolymers. Acta Polymerica Sinica 2013, 1492–1500.

  24. Hao, X.; Zhang, C.; Li, L.; Zhang, H.; Hu, Y.; Hao, D.; Zhang, X. Use of vanadium complexes bearing naphthalene-bridged nitrogen-sulfonate ligands as catalysts for copolymerization of ethylene and propylene. Polymers 2017, 9, e325.

    Article  Google Scholar 

  25. Michael, A. R.; Martin, H.; Jörg, S.; Li, X. Novel vanadium-imidoaryl compounds with electron-withdrawing groups on the aryl group are useful together with organo-metallic compounds as olefin polymerization catalysts. EP1284269A, 2001.

  26. Zhang, S.; Zhang, W. C.; Shang, D. D.; Zhang, Z. Q.; Wu, Y. X. Ethylene/propylene copolymerization catalyzed by vanadium complexes containing N-heterocyclic carbenes. Dalton Trans. 2015, 44, 15264–15270.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, S.; Zhang, W. C.; Shang, D. D.; Wu, Y. X. Synthesis of ultra-high-molecular-weight ethylene-propylene copolymer via quasi-living copolymerization with N-heterocyclic carbene ligated vanadium complexes. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 553–561.

    Article  CAS  Google Scholar 

  28. Zhang, S.; Wu, N.; Wu, Y. X. Highly cis-1,4 selective polymerization of conjugated dienes catalyzed by N-heterocyclic carbene-ligated neodymium complexes. Chinese J. Polym. Sci. 2020, 38, 1305–1312.

    Article  CAS  Google Scholar 

  29. Abernethy, C. D.; Codd, G. M.; Spicer, M. D.; Taylor, M. K. A highly stable N-heterocyclic carbene complex of trichloro-oxo-vanadium(V) displaying novel Cl−C carbene bonding interaction. J. Am. Chem. Soc. 2003, 125, 1128–1129.

    Article  PubMed  CAS  Google Scholar 

  30. Lorber, C.; Vendier L. Synthesis and structure of early transition metal NHC complexes. Dalton Trans. 2009, 6972–6984.

  31. Horrer, G.; Krummenacher, I.; Mann, S.; Braunschweig, H.; Radius, U. N-Heterocyclic carbene and cyclic (alkyl)(amino) carbene complexes of vanadium(III) and vanadium(V). Dalton Trans. 2022, 51, 11054–11071.

    Article  PubMed  CAS  Google Scholar 

  32. Arduengo III, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361–363.

    Article  CAS  Google Scholar 

  33. Nelson, D. J. Accessible syntheses of late transition metal (pre)catalysts bearing W-heterocyclic carbene ligands. Eur. J. Inorg. Chem. 2015, 2012–2027.

  34. Wang, H. M. J.; Lin, I. J. B. Facile synthesis of silver(I)-carbene complexes. Useful carbene transfer agents. Organometallics 1998, 17, 972–975.

    Article  CAS  Google Scholar 

  35. Furst, M. R. L.; Cazin, C. S. J. Copper N-heterocyclic carbene (NHC) complexes as carbene transfer reagents. Chem. Commun. 2010, 46, 6924–6925.

    Article  CAS  Google Scholar 

  36. Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Coinage metal-N-heterocyclic carbene complexes. Chem. Rev. 2009, 109, 3561–3598.

    Article  PubMed  CAS  Google Scholar 

  37. Nahra, F.; Gomez-Herrera, A.; Cazin, C. S. J. Copper(I)-NHC complexes as NHC transfer agents. Dalton Trans. 2017, 46, 628–631.

    Article  PubMed  CAS  Google Scholar 

  38. Garrison, J. C.; Youngs, W. J. Ag(I) N -heterocyclic carbene complexes: synthesis, structure, and application. Chem. Rev. 2005, 105, 3978–4008.

    Article  PubMed  CAS  Google Scholar 

  39. Bidal, Y. D.; Santoro, O.; Melaimi, M.; Cordes, D. B.; Slawin, A. M. Z.; Bertrand, G.; Cazin, C. S. J. Generalization of the copper to late-transition-metal transmetallation to carbenes beyond N-heterocyclic carbenes. Chem. Eur. J. 2016, 22, 9404–9409.

    Article  PubMed  CAS  Google Scholar 

  40. Danopoulos, A. A.; Simler, T.; Braunstein, P. N-heterocyclic carbene complexes of copper, nickel, and cobalt. Chem. Rev. 2019, 119, 3730–3961.

    Article  PubMed  CAS  Google Scholar 

  41. Mikhaylov, V. N.; Igor V. K.; Tatiana N. P.; Olesya V. K.; Manfred S.; Alexey Y. T.; Irina A. B. The carbene transfer to strong Lewis acids: copper is better than silver. Dalton Trans. 2021, 50, 2872–2879.

    Article  PubMed  CAS  Google Scholar 

  42. Al Thagfi, J.; Lavoie, G. G. Synthesis, characterization, and ethylene polymerization studies of chromium, iron, and cobalt complexes containing 1,3-bis(imino)-N-heterocyclic carbene ligands. Organometallics 2012, 31, 2463–2469.

    Article  CAS  Google Scholar 

  43. Al Thagfi, J.; Lavoie, G. G. Preparation and reactivity study of chromium(III), iron(II), and cobalt(II) complexes of 1,3-bis(imino)benzimidazol-2-ylidene and 1,3-bis(imino)pyrimidin-2-yli-dene. Organometallics 2012, 31, 7351–7358.

    Article  CAS  Google Scholar 

  44. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

    Google Scholar 

  45. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  46. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.

    Article  CAS  Google Scholar 

  47. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866–872.

    Article  CAS  Google Scholar 

  48. Wang, Z.; Yu, Y.; Zhang, Y. X.; Li, S. Z.; Qian, H.; Lin, Z. Y. A magnetically separable palladium catalyst containing a bulky N-heterocyclic carbene ligand for the Suzuki-Miyaura reaction. Green Chem. 2015, 17, 413–420.

    Article  CAS  Google Scholar 

  49. Belger, K.; Krause, N. Smaller, faster, better: modular synthesis of unsymmetrical ammonium salt-tagged NHC-gold(I) complexes and their application as recyclable catalysts in water. Org. Biomol. Chem. 2015, 13, 8556–8560.

    Article  PubMed  CAS  Google Scholar 

  50. Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 2019, 11, 872–879.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, W. J.; Zhu, S. P. Structural analysis of ethylene/propylene copolymers synthesized with a constrained geometry catalyst. Macromolecules 2000, 33, 1157–1162.

    Article  CAS  Google Scholar 

  52. Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  PubMed  Google Scholar 

  53. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21774006 and 21634002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zhang or Yi-Xian Wu.

Ethics declarations

The authors declare no interest conflict.

Additional information

S.Z. dedicated this work to Prof. Wen-Hua Sun in the occasion of his 60th birthday.

10118_2023_3020_MOESM1_ESM

10118_2023_3020_MOESM1_ESM.pdf

Vanadium(V) Complexes Containing Unsymmetrical N-Heterocyclic Carbene Ligands: Highly Efficient Synthesis and Catalytic Behavior Towards Ethylene/Propylene Copolymerization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Zha, H., Cheng, PY. et al. Vanadium(V) Complexes Containing Unsymmetrical N-Heterocyclic Carbene Ligands: Highly Efficient Synthesis and Catalytic Behavior towards Ethylene/Propylene Copolymerization. Chin J Polym Sci 42, 32–41 (2024). https://doi.org/10.1007/s10118-023-3020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3020-5

Keywords

Navigation