Skip to main content
Log in

Chain Dynamics Heterogeneity in Plasticized Poly(vinyl butyral) (PVB) as Elucidated by Solid-State NMR

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The chain dynamics heterogeneity of the poly(vinyl butyral) (PVB) plasticized by triethylene glycol bis(2-ethylhexanoate) (TEG-EH) was investigated by various solid-state NMR techniques. The plasticized PVB shows two domains in distinct molecular dynamics differences, namely, rigid and soft domains, where the latter is the plasticizer-rich domain. The time domain low field NMR was first used to investigate the dynamics heterogeneity of the plasticized PVB, and the results show the decreasing activated energy of components in the soft domain of plasticized PVB (Ea=20.2 kJ/mol) as compared with that of the pristine one (Ea=24.3 kJ/mol). Detailed dynamics heterogeneity was obtained by high-field NMR with site-specific features. The quadrupole-echo 2H-NMR was adopted to elucidate the dynamics heterogeneity of the vinyl alcohol (VA) units, where only the hydroxyl group of VA is deuterated. The 1H-13C WISE NMR spectra show that there is not much difference in the mobility of the VB unit in PVB with and without plasticizer, whereas the glass transition temperature differed by approximately 53 °C. This is further supported by Torchia’s T1 relaxation measurements. The origin of such an unusual phenomenon is attributed to the critical role of the remaining VA (∼22%) in the soft domain, where the VA units locally aggregate through hydrogen bonding. Also, the existence of a mobility gradient in the VB unit has been demonstrated. Moreover, the mobility difference for VB with different stereo-geometry (meso or racemic conformation) is observed for the first time. This indicates the importance of modulating the ratio of meso over racemic VB for controlling the macroscopic performance of PVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olabisi, O., Adewale, K. Handbook of thermoplastics. CRC Press, 2016.

  2. Chen, X.; Lv, C.; Li, Y.; Wu, Z.; Cao, R.; Fei, W.; Lv, J.; Chen, W. Precise characterization of the sequence distribution of poly(vinyl butyral) (PVB) by 2D-NMR and isotope enrichment. Macromolecules 2023, 56, 3036–3049.

    Article  CAS  Google Scholar 

  3. Cascone, E.; David, D. J.; Di Lorenzo, M. L.; Karasz, F. E.; Macknight, W. J.; Martuscelli, E.; Raimo, M. Blends of polypropylene with poly(vinyl butyral). J. Appl. Polym. Sci. 2001, 82, 2934–2946.

    Article  CAS  Google Scholar 

  4. Fernández, M. D.; Fernández, M. J.; Hoces, P. Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties. J. Appl. Polym. Sci. 2006, 102, 5007–5017.

    Article  Google Scholar 

  5. Schaefer, J.; Garbow, J. R.; Stejskal, E. O.; Lefelar, J. A. Plasticization of poly(butyra1-co-vinyl alcohol). Macromolecules 1987, 20, 1271–1278.

    Article  CAS  Google Scholar 

  6. Elzière, P.; Fourton, P.; Demassieux, Q.; Chennevière, A.; Dalle-Ferrier, C.; Creton, C.; Ciccotti, M.; Barthel, E. Supramolecular structure for large strain dissipation and outstanding impact resistance in polyvinylbutyral. Macromolecules 2019, 52, 7821–7830.

    Article  Google Scholar 

  7. Lv, C.; Guo, H.; Feng, S.; Yan, Q.; Xu, C.; Yu, W.; Li, L.; Cui, K. Deformation mechanism of amorphous plasticized poly(vinyl butyral). Macromolecules 2023, 56, 2663–2674.

    Article  CAS  Google Scholar 

  8. Litvinov, V.; Men, Y. Time-domain NMR in polyolefin research. Polymer 2022, 256.

  9. Saalwächter, K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 1–35.

    Article  Google Scholar 

  10. Spiess, H. W. 50th Anniversary perspective: the importance of nmr spectroscopy to macromolecular science. Macromolecules 2017, 50, 1761–1777.

    Article  CAS  Google Scholar 

  11. Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State NMR and Polymers; 1994.

  12. Mellinger, F.; Wilhelm, M.; Spiess, H. W. Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules 1999, 32, 4686–4691.

    Article  CAS  Google Scholar 

  13. Gill, L.; Damron, J.; Wachowicz, M.; White, J. L. Glass transitions, segmental dynamics, and friction coefficients for individual polymers in multicomponent polymer systems by chain-level experiments. Macromolecules 2010, 43, 3903–3910.

    Article  CAS  Google Scholar 

  14. Davies, E.; Duer, M. J.; Ashbrook, S. E.; Griffin, J. M. Applications of NMR crystallography to problems in biomineralization: refinement of the crystal structure and 31P solid-state NMR spectral assignment of octacalcium phosphate. J. Am. Chem. Soc. 2012, 134, 12508–12515.

    Article  PubMed  CAS  Google Scholar 

  15. Schneider, H.; Roos, M.; Golitsyn, Y.; Steiner, K.; Saalwächter, K. Dynamic heterogeneity of filler-associated interphases in polymer nanocomposites. Macromol. Rapid Commun. 2021, 42, 1–8.

    Article  Google Scholar 

  16. Wachowicz, M.; Gill, L.; White, J. L. Polyolefin blend miscibility: polarization transfer versus direct excitation exchange NMR. Macromolecules 2009, 42, 553–555.

    Article  CAS  Google Scholar 

  17. Wachowicz, M.; Gill, L.; Wolak, J.; White, J. L. Polypropylene and polyethylene-copolymer blend miscibility slow chain dynamics in individual blend components near the glass transition. Macromolecules 2008, 41, 2832–2838.

    Article  CAS  Google Scholar 

  18. Chen, W.; Reichert, D.; Miyoshi, T. Helical jump motions of poly(l-lactic acid) chains in the a phase as revealed by solid-state NMR. J. Phys. Chem. B 2015, 119, 4552–4563.

    Article  PubMed  CAS  Google Scholar 

  19. Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403.

    Article  CAS  Google Scholar 

  20. Fernández-De-Alba, C.; Jimenez, A. M.; Abbasi, M.; Kumar, S. K.; Saalwächter, K.; Baeza, J. P. On The Immobilized polymer fraction in attractive nanocomposites: Tg gradient versus interfacial layer. Macromolecules 2021, 54, 10289–10299.

    Article  Google Scholar 

  21. BaRenwald, R.; Champouret, Y.; SaalwäChter, K.; Schäler, K. Determination of chain flip rates in poly(ethylene) crystallites by solid-state low-field 1H NMR for two different sample morphologies. J. Phys. Chem. B 2012, 116, 13089–13097.

    Article  PubMed  CAS  Google Scholar 

  22. Biolzi, L.; Cagnacci, E.; Orlando, M.; Piscitelli, L.; Rosati, G. Long term response of glass-PVB double-lap joints. Compos. Part B: Eng. 2014, 63, 41–49.

    Article  CAS  Google Scholar 

  23. Kurz, R.; Achilles, A.; Chen, W.; Miyoshi, T.; Hurn-Albrecht, T.; Saalwächter, K. Intracrystalline jump motion in poly(ethylene oxide) lamellae of variable thickness: a comparison of NMR methods. Macromolecules 2017, 50, 3890–3902.

    Article  CAS  Google Scholar 

  24. Gaborieau, M.; Graf, R.; Kahle, S.; Pakula, T.; Spiess, H. W. Chain dynamics in poly(N-Alkyl acrylates) by solid-state NMR, dielectric, and mechanical spectroscopies. Macromolecules 2007, 40, 6249–6256.

    Article  CAS  Google Scholar 

  25. Nambiar, R. R.; Blum, F. D. Segmental dynamics of bulk poly(vinylacetate)-d3 by solid-state 2H NMR: effect of small molecule plasticizer. Macromolecules 2008, 41, 9837–9845.

    Article  CAS  Google Scholar 

  26. Hirschinger, J.; Miura, H.; Gardner, K. H.; English, A. D. Segmental dynamics in the crystalline phase of nylon 66: solid-state 2H NMR. Macromolecules 1990, 23, 2153–2169.

    Article  CAS  Google Scholar 

  27. Zeghal, M.; Auroy, P.; Deloche, B. Local uniaxial order in a grafted polymer melt via deuterium NMR. Phys. Rev. Lett. 1995, 75, 2140–2143.

    Article  PubMed  CAS  Google Scholar 

  28. Röber, S.; Zachmann, H. G. Determination of molecular orientation in poly(ethylene terephthalate) by means of 2H nuclear magnetic resonance. Polymer 1992, 33, 2061–2075.

    Article  Google Scholar 

  29. Smith, R. L.; Oldfield, E. Dynamic structure of membranes by deuterium NMR. Science 1984, 225, 280–288.

    Article  PubMed  CAS  Google Scholar 

  30. Hirschinger, J.; Miura, H.; Gardner, K. H. Segmental dynamics in the crystalline phase of nylon 66: solid state deuterium NMR. Macromolecules 2002, 23, 2153–2169.

    Article  Google Scholar 

  31. Hetayothin, B.; Cabaniss, R. A.; Blum, F. D. Dynamics of di(propylene glycol) dibenzoate-d10 in poly(vinyl acetate) by solid-state deuterium NMR. Macromolecules 2012, 45, 9128–9138.

    Article  CAS  Google Scholar 

  32. Chen, W.; David, D. J.; Macknight, W. J. Miscibility and phase behavior in blends of poly(vinyl butyral) and poly(methyl methacrylate). Macromolecules 2001, 34, 4277–4284.

    Article  CAS  Google Scholar 

  33. Bartels, T.; Lankalapalli, R. S.; Bittman, R.; Beyer, K.; Brown, M. F. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J. Am. Chem. Soc. 2008, 130, 14521–14532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Macho, V.; Brombacher, L.; Spiess, H. W. The NMR-WEBLAB: an internet approach to NMR lineshape analysis. Appl. Magn. Reson. 2001, 20, 405–432.

    Article  CAS  Google Scholar 

  35. Haupt, E. T. K.; Wontorra, C.; Rehder, D. Confinement and step-wise reopening of channels in an artificial cell/inorganic capsule: a 7Li NMR study. Chem. Eur. J. 2008, 14, 8808–8811.

    Article  PubMed  CAS  Google Scholar 

  36. Holland, G. P.; Lewis, R. V.; Yarger, J. L. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted nephila clavipes spider dragline silk. J. Am. Chem. Soc. 2004, 126, 5867–5872.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt-Rohr, K, Clauss, J, Spiess, H. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 1992, 25, 3273–3277.

    Article  CAS  Google Scholar 

  38. Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State NMR and Polymers. 1994.

  39. Yan, B.; Stark, R. E. A WISE NMR approach to heterogeneous biopolymer mixtures: dynamics and domains in wounded potato tissues. Macromolecules 1998, 31, 2600–2605.

    Article  CAS  Google Scholar 

  40. Clauss, J.; Schmidt-Rohr, K.; Adam, A.; Boeffel, C.; Spiess, H. W. Stiff macromolecules with aliphatic side chains: side-chain mobility, conformation, and organization from 2D solid-state NMR spectroscopy. Macromolecules 1992, 25, 5208–5214.

    Article  CAS  Google Scholar 

  41. Wang, L. Q.; Liu, J.; Exarhos, G. J.; Flanigan, K. Y.; Bordia, R. Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. J. Phys. Chem. B 2000, 104, 2810–2816.

    Article  CAS  Google Scholar 

  42. Miyoshi, T.; Mamum, A.; Reichert, D. Fast dynamics and conformations of polymer in a conformational disordered crystal characterized by 1H-13C WISE NMR. Macromolecules 2010, 43, 3986–3989.

    Article  CAS  Google Scholar 

  43. Ohgo, K.; Niemczura, W. P.; Muroi, T.; Onizuka, A. K.; Kumashiro, K. K. Wideline separation (WISE) NMR of native elastin. Macromolecules 2009, 42, 8899–8906.

    Article  CAS  Google Scholar 

  44. Torchia, D. A. The Measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J. Magn. Reson. 1979, 33, 481.

    Google Scholar 

  45. Mowery, D. M.; Harris, D. J.; Schmidt-Rohr, K. Characterization of a major fraction of disordered all-trans chains in cold-drawn high-density polyethylene by solid-state NMR. Macromolecules 2006, 39, 2856–2865.

    Article  CAS  Google Scholar 

  46. Li, Y.; Tao, W.; Chen, W. Evidence for complexation-induced micro-extension of poly(vinyl alcohol) chains in interphase and amorphous domains from solid-State NMR. Soft Matter 2022, 18, 8974–8982.

    Article  PubMed  CAS  Google Scholar 

  47. Yuan, S.; Schmidt-Rohr, K. Immobilized 13C-labeled polyether chain ends confined to the crystallite surface detected by advanced NMR. Sci. Adv. 2020, 6, 1–9.

    Article  Google Scholar 

  48. Hu, W. G.; Mao, J.; Xing, B.; Schmidt-Rohr, K. Poly(Methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ. Sci. Technol. 2000, 34, 530–534.

    Article  CAS  Google Scholar 

  49. Torchia, D. A. J. Magn. Reson. 1979, 33, 481.

    Google Scholar 

  50. Xia, Z.; Zhao, H.; Wang, Y.; Ma, Y.; Wang, X.; Meng, L.; Wang, D.; Sheng, J.; Chen, W. Chain dynamics and crystalline network structure of poly[R-3-hydroxybutyrate-co-4-hydroxybutyrate] as revealed by solid-state NMR. Soft Matter 2021, 17, 4195–4203.

    Article  PubMed  CAS  Google Scholar 

  51. Mao, J. D.; Hu, W. G.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E. A.; Xing, B. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 2000, 64, 873–884.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. U20A20256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Chen, X., Wu, ZS. et al. Chain Dynamics Heterogeneity in Plasticized Poly(vinyl butyral) (PVB) as Elucidated by Solid-State NMR. Chin J Polym Sci 42, 113–124 (2024). https://doi.org/10.1007/s10118-023-3017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3017-0

Keywords

Navigation