Skip to main content
Log in

Catalyst-Free Four-Component Spiropolymerization for the Construction of Spirocopolymers with Tunable Photophysical Properties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Spiropolymers have gained a great deal of interest from both academic and industrial fields by virtue of their unique geometric structures and physical properties. Herein, we prepared a series of spirocopolymers through the catalyst-free four-component spiropolymerization of diisocyanides, activated alkynes, and two different kinds of monomers with reactive carbonyl groups. It is found that the polymerization reactivity of monomers, feeding modes, and feed ratios play significant roles in spirocopolymerization. Monomers with high reactivity and feeding reactive monomers first contribute to improving the molecular weights and yields of the polymers. The constructed copolymers have two different kinds of spiro structures, which is confirmed by the nuclear magnetic resonance. In addition, the spirocopolymers display the unique cluster-triggered emission and aggregation-induced emission properties, and their emission properties can be well-modulated by altering the ratio of comonomers. It is highly anticipated that this line of research will enrich the methodology of multi-component spiropolymerization, and provide a new insight into developing spiropolymers with various spiro structures and tunable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.

    Article  CAS  Google Scholar 

  2. Pham, T. H.; Olsson, J. S.; Jannasch, P. N-spirocyclic quaternary ammonium ionenes for anion-exchange membranes. J. Am. Chem. Soc. 2017, 139, 2888–2891.

    Article  CAS  PubMed  Google Scholar 

  3. Han, T.; Yao, Z.; Qiu, Z.; Zhao, Z.; Wu, K.; Wang, J.; Poon, A. W.; Lam, J. W. Y.; Tang, B. Z. Photoresponsive spiro-polymers generated in situ by C-H-activated polyspiroannulation. Nat. Commun. 2019, 10, 5483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thompson, K. A.; Mathias, R.; Kim, D.; Kim, J.; Rangnekar, N.; Johnson, J. R.; Hoy, S. J.; Bechis, I.; Tarzia, A.; Jelfs, K. E.; McCool, B. A.; Livingston, A. G.; Lively, R. P.; Finn, M. G. N-aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 2020, 369, 310–315.

    Article  CAS  PubMed  Google Scholar 

  5. Cai, Z.; Ren, Y.; Li, X.; Shi, J.; Tong, B.; Dong, Y. Functional isocyanide-based polymers. Acc. Chem. Res. 2020, 53, 2879–2891.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, M.; Li, C.; Lv, A.; Wang, Z.; Bo, Z. Spirobifluorene-based conjugated polymers for polymer solar cells with high open-circuit voltage. Macromolecules 2012, 45, 3017–3022.

    Article  CAS  Google Scholar 

  7. Wang, X.; Zhao, L.; Shao, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Poly(spirobifluorene)s containing nonconjugated diphenylsulfone moiety: toward blue emission through a weak charge transfer effect. Macromolecules 2014, 47, 2907–2914.

    Article  CAS  Google Scholar 

  8. Valero, S.; Collavini, S.; Völker, S. F.; Saliba, M.; Tress, W. R.; Zakeeruddin, S. M.; Grätzel, M.; Delgado, J. L. Dopant-free hole-transporting polymers for efficient and stable perovskite solar cells. Macromolecules 2019, 52, 2243–2254.

    Article  CAS  Google Scholar 

  9. Ma, J.; Tian, J.; Liu, Z.; Shi, D.; Zhang, X.; Zhang, G.; Zhang, D. Multi-stimuli-responsive field-effect transistor with conjugated polymer entailing spiropyran in the side chains. CCS Chem. 2019, 1, 632–641.

    Google Scholar 

  10. Vidavsky, Y.; Yang, S. J.; Abel, B. A.; Agami, I.; Diesendruck, C. E.; Coates, G. W.; Silberstein, M. N. Enabling room-temperature mechanochromic activation in a glassy polymer: synthesis and characterization of spiropyran polycarbonate. J. Am. Chem. Soc. 2019, 141, 10060–10067.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, Y.; Zhang, J.; Fei, Z.; Bo, Z. Spiro-bridged ladder-type poly(p-phenylene)s: towards structurally perfect light-emitting materials. J. Am. Chem. Soc. 2008, 130, 7192–7193.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, J.-X.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Bacsa, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. High surface area contorted conjugated microporous polymers based on spiro-bipropylenedioxythiophene. Macromolesules 2010, 43, 7577–7582.

    Article  CAS  Google Scholar 

  13. Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24, 5930–5933.

    Article  CAS  PubMed  Google Scholar 

  14. Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I. Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications. Macromolecules 2013, 46, 9618–9624.

    Article  CAS  Google Scholar 

  15. Zhao, Y. C.; Zhang, L. M.; Wang, T.; Han, B. H. Microporous organic polymers with acetal linkages: synthesis, characterization, and gas sorption properties. Polym. Chem. 2014, 5, 614–621.

    Article  CAS  Google Scholar 

  16. Shamsipur, H.; Dawood, B. A.; Budd, P. M.; Bernardo, P.; Clarizia, G.; Jansen, J. C. Thermally rearrangeable PIM-polyimides for gas separation membranes. Macromolecules 2014, 47, 5595–5606.

    Article  CAS  Google Scholar 

  17. McDowell, J. J.; Gao, D.; Seferos, D. S.; Ozin, G. Synthesis of poly(spirosilabifluorene) copolymers and their improved stability in blue emitting polymer LEDs over non-spiro analogs. Polym. Chem. 2015, 6, 3781–3789.

    Article  CAS  Google Scholar 

  18. Olsson, J. S.; Pham, T. H.; Jannasch, P. Poly(N,N-diallylazacycloalkane)s for anion-exchange membranes functionalized with N-spirocyclic quaternary ammonium cations. Macromolecules 2017, 50, 2784–2793.

    Article  CAS  Google Scholar 

  19. Nagatsu, G.; Sakanoue, T.; Tane, S.; Yonekawa, F.; Takenobu, T. An ester-substituted polyfluorene derivative for light-emitting electrochemical cells: bright blue emission and its application in a host-guest system. Mater. Chem. Front. 2018, 2, 952–958.

    Article  CAS  Google Scholar 

  20. Xu, X.; Li, X.; Wang, S.; Ding, J.; Wang, L. Deep-blue emitting poly[spiro(dibenzoazasiline-10′,9-silafluorene)] for power-efficient PLEDs. J. Mater. Chem. C 2018, 6, 9599–9606.

    Article  CAS  Google Scholar 

  21. Foster, A. B.; Tamaddondar, M.; Luque-Alled, J. M.; Harrison, W. J.; Li, Z.; Gorgojo, P.; Budd, P. M. Understanding the topology of the polymer of intrinsic microporosity PIM-1: cyclics, tadpoles, and network structures and their impact on membrane performance. Macromolecules 2020, 53, 569–583.

    Article  CAS  Google Scholar 

  22. Pemba, A. G.; Rostagno, M.; Lee, T. A.; Miller, S. A. Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics. Polym. Chem. 2014, 5, 3214–3221.

    Article  CAS  Google Scholar 

  23. Okuda, H.; Koyama, Y.; Uchida, S.; Michinobu, T.; Sogawa, H.; Takata, T. Reversible transformation of a one-handed helical foldamer utilizing a planarity-switchable spacer and C2-chiral spirobifluorene units. ACS Macro Lett. 2015, 4, 462–466.

    Article  CAS  PubMed  Google Scholar 

  24. K, S. N.; Azechi, M.; Endo, T. Synthesis and properties of spiro-centered benzoxazines. Macromolecules 2015, 48, 7466–7472.

    Article  CAS  Google Scholar 

  25. Zhao, Y. C.; Wang, T.; Zhang, L. M.; Cui, Y.; Han, B. H. Microporous spiro-centered poly(benzimidazole) networks: preparation, characterization, and gas sorption properties. Polym. Chem. 2015, 6, 748–753.

    Article  CAS  Google Scholar 

  26. Modak, A.; Maegawa, Y.; Goto, Y.; Inagaki, S. Synthesis of 9,9′-spirobifluorene-based conjugated microporous polymers by FeCl3-mediated polymerization. Polym. Chem. 2016, 7, 1290–1296.

    Article  CAS  Google Scholar 

  27. Sycks, D. G.; Safranski, D. L.; Reddy, N. B.; Sun, E.; Gall, K. Tough semicrystalline thiol-ene photopolymers incorporating spiroacetal alkenes. Macromolecules 2017, 50, 4281–4291.

    Article  CAS  Google Scholar 

  28. Schmidt, S. B.; Kempe, F.; Brügner, O.; Walter, M.; Sommer, M. Alkyl-substituted spiropyrans: electronic effects, model compounds and synthesis of aliphatic main-chain copolymers. Polym. Chem. 2017, 8, 5407–5414.

    Article  CAS  Google Scholar 

  29. Feng, Q. Y.; Li, B.; Zuo, Z. Y.; Xie, S. L.; Yu, M. N.; Liu, B.; Wei, Y.; Xie, L. H.; Xia, R. D.; Huang, W. A comparison study of physicochemical properties and stabilities of H-shaped molecule and the corresponding polymer. Chinese J. Polym. Sci. 2019, 37, 11–17.

    Article  CAS  Google Scholar 

  30. Fang, L.; Zhou, J.; He, C.; Tao, Y.; Wang, C.; Dai, M.; Wang, H.; Sun, J.; Fang, Q. Understanding how intrinsic micro-pores affect the dielectric properties of polymers: an approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores. Polym. Chem. 2020, 11, 2674–2680.

    Article  CAS  Google Scholar 

  31. Tan, W. Y.; Jian, L. F.; Chen, W. P.; Zhang, Y. W.; Lu, X. C.; Huang, W. J.; Zhang, J. S.; Wu, J. W.; Feng, J. L.; Liu, Y. D.; Cui, T. T.; Min, Y. G. A facile strategy for intrinsic low-Dk and low-Df polyimides enabled by spirobifluorene groups. Chinese J. Polym. Sci. 2023, 41, 288–296.

    Article  CAS  Google Scholar 

  32. Fu, W. Q.; Zhu, G. N.; Shi, J. B.; Tong, B.; Cai, Z. X.; Dong, Y. P. Synthesis and properties of photodegradable poly(furan-amine)s by a catalyst-free multicomponent cyclopolymerization. Chinese J. Polym. Sci. 2019, 37, 981–989.

    Article  CAS  Google Scholar 

  33. Liu, P.; Fu, W.; Verwilst, P.; Won, M.; Shin, J.; Cai, Z.; Tong, B.; Shi, J.; Dong, Y.; Kim, J. S. MDM2-associated clusterization-triggered emission and apoptosis induction effectuated by a theranostic spiropolymer. Angew. Chem. Int. Ed. 2020, 59, 8435–8439.

    Article  CAS  Google Scholar 

  34. Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 2012, 1, 1300–1303.

    Article  CAS  PubMed  Google Scholar 

  35. Han, T.; Deng, H.; Qiu, Z.; Zhao, Z.; Zhang, H.; Zou, H.; Leung, N. L. C.; Shan, G.; Elsegood, M. R. J.; Lam, J. W. Y.; Tang, B. Z. Facile multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. J. Am. Chem. Soc. 2018, 140, 5588–5598.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, J.; Wu, Y. H.; Wang, J. C.; Du, F. S.; Li, Z. C. Functional poly(ester-amide)s with tertiary ester linkages via the passerini multicomponent polymerization of a dicarboxylic acid and a diisocyanide with different electron-deficient ketones. Macromolecules 2018, 51, 5842–5851.

    Article  CAS  Google Scholar 

  37. Wu, X.; Lin, H.; Dai, F.; Hu, R.; Tang, B. Z. Functional polyselenoureas for selective gold recovery prepared from catalyst-free multicomponent polymerizations of elemental selenium. CCS Chem. 2020, 2, 191–202.

    Article  CAS  Google Scholar 

  38. Liu, X.; Xiao, M.; Xue, K.; Li, M.; Liu, D.; Wang, Y.; Yang, X.; Hu, Y.; Kwok, R. T. K.; Qin, A.; Zhu, C.; Lam, J. W. Y.; Tang, B. Z. Heteroaromatic hyperbranched polyelectrolytes: multicomponent polyannulation and photodynamic biopatterning. Angew. Chem. Int. Ed. 2021, 60, 19222–19231.

    Article  CAS  Google Scholar 

  39. Wu, X.; He, J.; Hu, R.; Tang, B. Z. Room-temperature metal-free multicomponent polymerizations of elemental selenium toward stable alicyclic poly(oxaselenolane)s with high refractive index. J. Am. Chem. Soc. 2021, 143, 15723–15731.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, J.; Zang, Q.; Yang, F.; Zhang, H.; Sun, J. Z.; Tang, B. Z. Sulfur conversion to multifunctional poly(O-thiocarbamate)s through multicomponent polymerizations of sulfur, diols, and diisocyanides. J. Am. Chem. Soc. 2021, 143, 3944–3950.

    Article  CAS  PubMed  Google Scholar 

  41. Li, M.; Duan, X.; Jiang, Y.; Sun, X.; Xu, X.; He, J.; Zheng, Y.; Song, W.; Zheng, N. Three-component asymmetric polymerization toward chiral polymer. CCS Chem. 2022, 4, 3402–3415.

    Article  CAS  Google Scholar 

  42. Li, M.; Fu, X.; Wang, J.; Qin, A.; Tang, B. Z. Progress in isocyanide-based step-growth polymerization. Macromol. Chem. Phys. 2022, 224, 2200352.

    Article  Google Scholar 

  43. Ren, Y.; Dai, W.; Guo, S.; Dong, L.; Huang, S.; Shi, J.; Tong, B.; Hao, N.; Li, L.; Cai, Z.; Dong, Y. Clusterization-triggered color-tunable room-temperature phosphorescence from 1,4-dihydropyridine-based polymers. J. Am. Chem. Soc. 2022, 144, 1361–1369.

    Article  CAS  PubMed  Google Scholar 

  44. Yan, H.; He, Y.; Wang, D.; Han, T.; Tang, B. Z. Aggregation-induced emission polymer systems with circularly polarized luminescence. Aggregate 2022, 4, e331.

    Article  Google Scholar 

  45. Fu, X.; Qin, A.; Tang, B. Z. X-yne click polymerization. Aggregate 2022, 4, e350.

    Google Scholar 

  46. Nair, V.; Vinod, A. U.; Nair, J. S.; Sreekanth, A. R.; Rath, N. P. The reaction of cyclohexyl isocyanide and dimethyl acetylenedicarboxylate with o- and p-quinones: a novel synthesis of iminolactones. Tetrahedron Lett. 2000, 41, 6675–6679.

    Article  CAS  Google Scholar 

  47. Nair, V.; Vinod, A. U.; Abhilash, N.; Menon, R. S.; Santhi, V.; Varma, R. L.; Viji, S.; Mathew, S.; Srinivas, R. Multicomponent reactions involving zwitterionic intermediates for the construction of heterocyclic systems: one pot synthesis of aminofurans and iminolactones. Tetrahedron 2002, 59, 10279–10286.

    Article  Google Scholar 

  48. Yavari, I.; Djahaniani, H. One-step synthesis of substituted 4,7-bis[alkyl(aryl)imino]-3-oxa-6-thia-1-azaspiro[4.4]nona-1,8-dienes. Tetrahedron Lett. 2005, 46, 7491–7493.

    Article  CAS  Google Scholar 

  49. Nair, V.; Menon, R. S. Nucleophile-initiated catalytic and multicomponent reactions. Chem. Rec. 2019, 19, 347–361.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, G.; Lin, N.; Wu, X.; Shi, J.; Tong, B.; Cai, Z.; Zhi, J.; Dong, Y. Multicomponent spiropolymerization of diisocyanides, activated alkynes, and bis-anhydrides. Macromolecules 2022, 55, 6150–6159.

    Article  CAS  Google Scholar 

  51. Zhang, J.; Jin, J.; Cooney, R.; Fu, Q.; Qiao, G. G.; Thomas, S.; Merkel, T. C. Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity. Polym. Chem. 2015, 6, 5003–5008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875019, 22175023, 21975020 and 21975021), the National Key Research and Development Program of China (No. 2018YFA0901800) College Students’ Innovative Entrepreneurial Training Plan Program (No. BIT2022LH180) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Sun or Yu-Ping Dong.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3007_MOESM1_ESM.pdf

Catalyst-Free Four-Component Spiropolymerization for the Construction of Spirocopolymers with Tunable Photophysical Properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, LJ., Zhu, GN., Yan, WY. et al. Catalyst-Free Four-Component Spiropolymerization for the Construction of Spirocopolymers with Tunable Photophysical Properties. Chin J Polym Sci 41, 1525–1532 (2023). https://doi.org/10.1007/s10118-023-3007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3007-2

Keywords

Navigation