Skip to main content
Log in

Understand the Temperature Sensing Behavior of Solid-state Polymerized PEDOT Hybrid Based on X-ray Scattering Studies

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrids consisting of PEDOT, sodium poly(styrene sulfonate) (PSSNa) and polyethylene oxide (PEO), and their preparation could be scaled-up via an adapted solid-state polymerization process. The resistance of the as-prepared PEDOT:PSS/PEO hybrid shows clear temperature response, i.e., it decreases almost linearly with the temperature increase. To understand this phenomenon, the in situ synchrotron radiation wide- and small-angle X-ray scattering (WAXS/SAXS) characterizations were undertaken to study the temperature-dependent microstructure change of the PEDOT:PSS/PEO hybrid. It demonstrated that PEDOT formed conductive paths in the hybrids, which were not destroyed by the PEO crystallization. As temperature increased, the PEO crystals’ melting and the accompanying reorganization of PEDOT chains endowed the hybrid sample temperature responsiveness. Based on these fundamental knowledges, the hybrid materials were used to fabricate flexible wearable sensor that showing temperature sensing performance with an accuracy of 1 °C. These findings shed lights on the scalable manufacturing of wearable sensors for body temperature monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523.

    Article  Google Scholar 

  2. Ma, L. Y.; Soin, N. Recent progress in printed physical sensing electronics for wearable health-monitoring devices: a review. IEEE Sens. J. 2022, 22, 3844–3859.

    Article  CAS  Google Scholar 

  3. Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2017, 2, 443–448.

    Article  PubMed  CAS  Google Scholar 

  4. Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J. J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grant, A.; Smarr, B. Feasibility of continuous distal body temperature for passive, early pregnancy detection. PLOS Digit. Health. 2022, 1, e0000034.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang, Z.; Kong, N.; Zhang, X.; Liu, Y.; Hu, P.; Mou, S.; Liljeström, P.; Shi, J.; Tan, W.; Kim, J. S.; Cao, Y.; Langer, R.; Leong, K. W.; Farokhzad, O. C.; Tao, W. A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 2020, 5, 847–860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D. H.; Brooks, G. A.; Davis, R. W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hasanpour, S.; Karperien, L.; Walsh, T.; Jahanshahi, M.; Hadisi, Z.; Neale, K. J.; Christie, B. R.; Djilali, N.; Akbari, M. A hybrid thread-based temperature and humidity sensor for continuous wound monitoring. Sens. Actuators B 2022, 370, 132414.

    Article  CAS  Google Scholar 

  9. T, K.; Rajini, G. K.; Maji, D. Cost-effective, disposable, flexible, and printable MWCNT-based wearable sensor for human body temperature monitoring. IEEE Sens. J. 2022, 22, 16756–16763.

    Article  Google Scholar 

  10. Tharakan, S.; Nomoto, K.; Miyashita, S.; Ishikawa, K. Body temperature correlates with mortality in COVID-19 patients. Crit. Care. 2020, 24, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smarr, B. L.; Aschbacher, K.; Fisher, S. M.; Chowdhary, A.; Dilchert, S.; Puldon, K.; Rao, A.; Hecht, F. M.; Mason, A. E. Feasibility of continuous fever monitoring using wearable devices. Sci. Rep. 2020, 10, 21640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 2014, 24, 3299–3304.

    Article  CAS  Google Scholar 

  13. Hall, J. E.; Hall, M. E. Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences: 2020.

  14. Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O. M.; Zhu, Z.; Wang, L.; Li, H. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 2020, 15, 200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.

    Article  PubMed  CAS  Google Scholar 

  16. Meng, X.; Xing, Z.; Hu, X.; Chen, Y. Large-area flexible organic solar cells: printing technologies and modular design. Chinese J. Polym. Sci. 2022, 40, 1522–1566.

    Article  CAS  Google Scholar 

  17. Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433.

    Article  PubMed  CAS  Google Scholar 

  18. Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sens. 2007, 7, 267–307.

    Article  CAS  Google Scholar 

  19. Lu, Y.; Wen, Y. P.; Lu, B. Y.; Duan, X. M.; Xu, J. K.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chinese J. Polym. Sci. 2012, 30, 824–836.

    Article  CAS  Google Scholar 

  20. Jian, M.; Zhang, Y.; Liu, Z. Natural biopolymers for flexible sensing and energy devices. Chinese J. Polym. Sci. 2020, 38, 459–490.

    Article  CAS  Google Scholar 

  21. Dimov, I. B.; Moser, M.; Malliaras, G. G.; McCulloch, I. Semiconducting polymers for neural applications. Chem. Rev. 2022, 122, 4356–4396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Guimard, N. K.; Gomez, N.; Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876–921.

    Article  CAS  Google Scholar 

  23. Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.

    Article  Google Scholar 

  24. Li, P.; Sun, K.; Ouyang, J. Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 2015, 7, 18415–18423.

    Article  PubMed  CAS  Google Scholar 

  25. Sanviti, M.; Martínez-Tong, D. E.; Rebollar, E.; Ezquerra, T. A.; García-Gutiérrez, M. C. Crystallization and phase separation in PEDOT:PSS/PEO blend thin films: influence on mechanical and electrical properties at the nanoscale. Polymer 2022, 125475.

  26. Lo, L. W.; Zhao, J.; Wan, H.; Wang, Y.; Chakrabartty, S.; Wang, C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 2021, 13, 21693–21702.

    Article  PubMed  CAS  Google Scholar 

  27. Corradi, R.; Armes, S. P. Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth. Met. 1997, 84, 453–454.

    Article  CAS  Google Scholar 

  28. Zhou, Z.; Tao, Z.; Zhang, L.; Zheng, X.; Xiao, X.; Liu, Z.; Li, X.; Liu, G.; Zhao, P.; Zhang, P. Scalable manufacturing of solid polymer electrolytes with superior room-temperature ionic conductivity. ACS Appl. Mater. Interfaces 2022, 14, 32994–33003.

    Article  CAS  Google Scholar 

  29. Li, Y. W.; Liu, G. F.; Wu, H. J.; Zhou, P.; Hong, C. X.; Li, N.; Bian, F. G. BL19U2: small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF. Nucl. Sci. Tech. 2020, 31, 117.

    Article  CAS  Google Scholar 

  30. Hopkins, J. B.; Gillilan, R. E.; Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 2017, 50, 1545–1553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wu, X.; Liu, H.; Tang, Z.; Guo, B. Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding. Compos. Sci. Technol. 2016, 123, 179–186.

    Article  CAS  Google Scholar 

  32. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481–494.

    Article  CAS  Google Scholar 

  33. Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J. P. Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Prog. Mater. Sci. 2020, 108, 100616.

    Article  CAS  Google Scholar 

  34. Zozoulenko, I.; Singh, A.; Singh, S. K.; Gueskine, V.; Crispin, X.; Berggren, M. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl. Mater. Interfaces 2019, 1, 83–94.

    CAS  Google Scholar 

  35. Elschner, A.; Kirchmeyer, S.; Lovenich, W.; Merker, U.; Reuter, K. PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press: 2010.

  36. Meng, H.; Perepichka, D. F.; Wudl, F. Facile solid-state synthesis of highly conducting poly(ethylenedioxythiophene). Angew. Chem., Int. Ed. 2003, 42, 658–661.

    Article  CAS  Google Scholar 

  37. Dörr, T. S.; Pelz, A.; Zhang, P.; Kraus, T.; Winter, M.; Wiemhöfer, H. D. An ambient temperature electrolyte with superior lithium ion conductivity based on a self-assembled block copolymer. Chem. Eur. J. 2018, 24, 8061–8065.

    Article  PubMed  Google Scholar 

  38. Zardalidis, G.; Mars, J.; Allgaier, J.; Mezger, M.; Richter, D.; Floudas, G. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. Soft Matter 2016, 12, 8124–8134.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi, Y.; Tadokoro, H. Structural studies of polyethers, (−(CH2)m−O−)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 1973, 6, 672–675.

    Article  CAS  Google Scholar 

  40. Liu, Z.; Wu, L.; Qian, J.; Peng, J.; Liu, R.; Xu, Y.; Shi, X.; Qi, C.; Ye, S. Tuned transport behavior of the IPA-treated PEDOT:PSS flexible temperature sensor via screen printing. J. Electron. Mater. 2021, 50, 2356–2364.

    Article  CAS  Google Scholar 

  41. Zhang, F.; Hu, H.; Islam, M.; Peng, S.; Wu, S.; Lim, S.; Zhou, Y.; Wang, C. H. Multi-modal strain and temperature sensor by hybridizing reduced graphene oxide and PEDOT:PSS. Compos. Sci. Technol. 2020, 187, 107959.

    Article  CAS  Google Scholar 

  42. Kiebooms, R.; Aleshin, A.; Hutchison, K.; Wudl, F.; Heeger, A. Doped poly(3,4-ethylenedioxythiophene) films: thermal, electromagnetical and morphological analysis. Synth. Met. 1999, 101, 436–437.

    Article  CAS  Google Scholar 

  43. Ju, D.; Kim, D.; Yook, H.; Han, J. W.; Cho, K. Controlling electrostatic interaction in PEDOT:PSS to overcome thermoelectric tradeoff relation. Adv. Funct. Mater. 2019, 29, 1905590.

    Article  CAS  Google Scholar 

  44. Chu, B.; Hsiao, B. S. Small-angle X-ray scattering of polymers. Chem. Rev. 2001, 101, 1727–1762.

    Article  PubMed  CAS  Google Scholar 

  45. Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, P.; Zou, R.; Wu, S.; Meyer, L. A.; Wang, J.; Kraus, T. Gold nanoprobes exploring the ice structure in the aqueous dispersion of poly(ethylene glycol)-gold hybrid nanoparticles. Langmuir 2022, 38, 2460–2466.

    Article  PubMed  CAS  Google Scholar 

  47. Yeh, S.-W.; Wu, T. L.; Wei, K. H.; Sun, Y. S.; Liang, K. S. Effect of incorporated CdS nanoparticles on the crystallinity and morphology of poly(styrene-b-ethylene oxide) diblock copolymers. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 1220–1229.

    Article  CAS  Google Scholar 

  48. Fu, K.; Lv, R.; Na, B.; Zou, S.; Zeng, R.; Wang, B.; Liu, H. Mixed ion-electron conducting PEO/PEDOT:PSS miscible blends with intense electrochromic response. Polymer 2019, 184, 121900.

    Article  CAS  Google Scholar 

  49. Li, X.; Zou, R.; Liu, Z.; Mata, J.; Storer, B.; Chen, Y.; Qi, W.; Zhou, Z.; Zhang, P. Deciphering the superior thermoelectric property of post-treatment-free PEDOT:PSS/IL hybrid by X-ray and neutron scattering characterization. npj Flexible Electron. 2022, 6, 6.

    Article  CAS  Google Scholar 

  50. Liu, Z.; Li, X.; Zou, R.; Zhou, Z.; Ma, Q.; Zhang, P. Deciphering the quaternary structure of PEDOT:PSS aqueous dispersion with small-angle scattering. Polymer 2022, 261, 125415.

    Article  CAS  Google Scholar 

  51. Li, X.; He, Z.; Liu, Z.; Chen, Y.; Zhou, Z.; Chen, G.; Qi, W.; Rauber, D.; W. M. Kay, C.; Zhang, P. High-performance post-treatment-free PEDOT based thermoelectric with the establishment of long-range ordered conductive paths. Chem. Eng. J. 2023, 454, 140047.

    Article  CAS  Google Scholar 

  52. Daoud, W. A.; Xin, J. H.; Szeto, Y. S. Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens. Actuators, B 2005, 109, 329–333.

    Article  CAS  Google Scholar 

  53. Yu, Y.; Peng, S.; Blanloeuil, P.; Wu, S.; Wang, C. H. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in PEDOT:PSS-PDMS sensors. ACS Appl. Mater. Interfaces 2020, 12, 36578–36588.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U2032101 and 11905306), Fundamental Research Funds for the Central Universities (No. 19lgpy14) and “100 Top Talents Program” of Sun Yat-sen University. Ms. Huiyun Deng is thanked for her help during the sample preparation. This work was carried out with the support of 19U2 beamline at Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Peng Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZH., Liu, GF., Zhou, ZK. et al. Understand the Temperature Sensing Behavior of Solid-state Polymerized PEDOT Hybrid Based on X-ray Scattering Studies. Chin J Polym Sci 42, 105–112 (2024). https://doi.org/10.1007/s10118-023-3005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3005-4

Keywords

Navigation