Skip to main content
Log in

Understanding Mass Dependence of Glass Formation in Ring Polymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Having highly tunable molecular topology is one of the most important characteristics of polymers that provides these materials with a wide range of interesting and unique properties. In particular, ring polymers exhibit a number of properties that are markedly distinct from their linear counterparts. Here, we compare and contrast the glass formation of unknotted, nonconcatenated ring and linear polymer melts having variable molecular mass based on molecular dynamics simulations of a coarse-grained model. After revealing an unusual property in the structure of small rings, we discuss the mass dependence of the structural relaxation time determined from the self-intermediate scattering function over a wide range of temperatures in both ring and linear polymers. As a general trend, we find that the characteristic temperatures (e.g., the glass transition temperature) and fragility of glass formation increase with increasing molecular mass in linear polymers, but the mass dependences of these properties are rather weak in the family of ring polymer models considered, in broad accord with experimental measurements. Importantly, we show that the glass formation of ring polymers can quantitatively be described by the string model, a model that is broadly consistent with the entropy theory of glass formation and that takes the mass of string-like clusters as a molecular realization of the abstract cooperatively rearranging regions. This opens the possibility of applying the configurational entropy-based theories to describe the glass formation of ring polymers, once the ring topology is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadziioannou, G.; Cotts, P. M.; ten Brinke, G.; Han, C. C.; Lutz, P.; Strazielle, C.; Rempp, P.; Kovacs, A. J. Thermodynamic and hydrodynamic properties of dilute solutions of cyclic and linear polystyrenes. Macromolecules 1987, 20, 493–497.

    CAS  Google Scholar 

  2. Alberty, K. A.; Hogen-Esch, T. E.; Carlotti, S. Synthesis and characterization of macrocyclic vinyl-aromatic polymers. Macromol. Chem. Phys. 2005, 206, 1035–1042.

    CAS  Google Scholar 

  3. Lonsdale, D. E.; Monteiro, M. J. Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. Chem. Commun. 2010, 46, 7945–7947.

    CAS  Google Scholar 

  4. Zimm, B. H.; Stockmayer, W. H. The dimensions of chain molecules containing branches and rings. J. Chem. Phys. 1949, 17, 1301–1314.

    CAS  Google Scholar 

  5. Kramers, H. A. The behavior of macromolecules in inhomogeneous flow. J. Chem. Phys. 1946, 14, 415–424.

    CAS  Google Scholar 

  6. Roovers, J. Viscoelastic properties of polybutadiene rings. Macromolecules 1988, 21, 1517–1521.

    CAS  Google Scholar 

  7. Pasquino, R.; Vasilakopoulos, T. C.; Jeong, Y. C.; Lee, H.; Rogers, S.; Sakellariou, G.; Allgaier, J.; Takano, A.; Bras, A. R.; Chang, T.; Gooßen, S.; Pyckhout-Hintzen, W.; Wischnewski, A.; Hadjichristidis, N.; Richter, D.; Rubinstein, M.; Vlassopoulos, D. Viscosity of ring polymer melts. ACS Macro Lett. 2013, 2, 874–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeong, Y.; Jin, Y.; Chang, T.; Uhlik, F.; Roovers, J. Intrinsic viscosity of cyclic polystyrene. Macromolecules 2017, 50, 7770–7776.

    CAS  Google Scholar 

  9. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 2008, 7, 997–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vargas-Lara, F.; Hassan, A. M.; Mansfield, M. L.; Douglas, J. F. Knot energy, complexity, and mobility of knotted polymers. Sci. Rep. 2017, 7, 13374.

    PubMed  PubMed Central  Google Scholar 

  11. Vargas-Lara, F.; Pazmiño Betancourt, B. A.; Douglas, J. F. Communication: a comparison between the solution properties of knotted ring and star polymers. J. Chem. Phys. 2018, 149, 161101.

    PubMed  Google Scholar 

  12. Morgese, G.; Trachsel, L.; Romio, M.; Divandari, M.; Ramakrishna, S. N.; Benetti, E. M. Topological polymer chemistry enters surface science: linear versus cyclic polymer brushes. Angew. Chem. Int. Ed. 2016, 55, 15583–15588.

    CAS  Google Scholar 

  13. Liénard, R.; De Winter, J.; Coulembier, O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. J. Polym. Sci. 2020, 58, 1481–1502.

    Google Scholar 

  14. Romio, M.; Trachsel, L.; Morgese, G.; Ramakrishna, S. N.; Spencer, N. D.; Benetti, E. M. Topological polymer chemistry enters materials science: expanding the applicability of cyclic polymers. ACS Macro Lett. 2020, 9, 1024–1033.

    CAS  PubMed  Google Scholar 

  15. Cai, X.; Liang, C.; Liu, H.; Zhang, G. Conformation and structure of ring polymers in semidilute solutions: a molecular dynamics simulation study. Polymer 2022, 253, 124953.

    CAS  Google Scholar 

  16. Cai, X.; Liu, H.; Zhang, G. Control of the threading ratio of rings in a polypseudorotaxane: a computer simulation study. Polymer 2023, 268, 125705.

    CAS  Google Scholar 

  17. Chen, Y. X.; Cai, X. Q.; Zhang, G. J. Topological catenation enhances elastic modulus of single linear polycatenane. Chinese J. Polym. Sci. 2023, 41, DOI: https://doi.org/10.1007/s10118-023-2902-x.

  18. Lei, H.; Zhang, J.; Wang, L.; Zhang, G. Dimensional and shape properties of a single linear polycatenane: effect of catenation topology. Polymer 2021, 212, 123160.

    CAS  Google Scholar 

  19. Kruteva, M.; Allgaier, J.; Monkenbusch, M.; Hoffmann, I.; Richter, D. Structure and dynamics of large ring polymers. J. Rheol. 2021, 65, 713–727.

    CAS  Google Scholar 

  20. Wu, Z. T.; Zhou, J. J. Mechanical properties of interlocked-ring polymers: a molecular dynamics simulation study. Chinese J. Polym. Sci. 2019, 37, 1298–1304.

    CAS  Google Scholar 

  21. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 2011, 134, 204904.

    PubMed  Google Scholar 

  22. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 2011, 134, 204905.

    PubMed  Google Scholar 

  23. Wang, L.; Xu, L.; Liu, B.; Shi, T.; Jiang, S.; An, L. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains. Soft Matter 2017, 13, 3091–3098.

    CAS  PubMed  Google Scholar 

  24. Zhu, L.; Li, J.; Li, H.; Liu, B.; Chen, J.; Jiang, S. The role of entanglement in crystallization and melting of cyclic poly(ε-caprolactone)s. CrystEngComm 2023, 25, 1383–1392.

    CAS  Google Scholar 

  25. Zhang, H.; Lv, T.; Li, J.; Liu, B.; Jiang, S. Pendant affected crystallization behaviors of cyclic poly(ε-caprolactone). Crystal Growth & Design 2019, 19, 49–54.

    Google Scholar 

  26. Semlyen, J. A. Cyclic polymers. 2nd ed.; Kluwer Academic: Dordrecht: The Netherlands, 2000, p. 790.

    Google Scholar 

  27. Ree, B. J.; Satoh, T.; Yamamoto, T. Micelle structure details and stabilities of cyclic block copolymer amphiphile and its linear analogues. Polymers 2019, 11, 163.

    PubMed  PubMed Central  Google Scholar 

  28. Wang, C. E.; Wei, H.; Tan, N.; Boydston, A. J.; Pun, S. H. Sunflower polymers for folate-mediated drug delivery. Biomacromolecules 2016, 17, 69–75.

    CAS  PubMed  Google Scholar 

  29. Tu, X. Y.; Meng, C.; Wang, Y. F.; Ma, L. W.; Wang, B.-Y.; He, J. L.; Ni, P. H.; Ji, X. L.; Liu, M. Z.; Wei, H. Fabrication of thermosensitive cyclic brush copolymer with enhanced therapeutic efficacy for anticancer drug delivery. Macromol. Rapid Commun. 2018, 39, 1700744.

    Google Scholar 

  30. Wei, H.; Chu, D. S. H.; Zhao, J.; Pahang, J. A.; Pun, S. H. Synthesis and evaluation of cyclic cationic polymers for nucleic acid delivery. ACS Macro Lett. 2013, 2, 1047–1050.

    CAS  Google Scholar 

  31. Fu, C.; Lin, L.; Shi, H.; Zheng, D.; Wang, W.; Gao, S.; Zhao, Y.; Tian, H.; Zhu, X.; Chen, X. Hydrophobic poly(amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. Biomaterials 2012, 33, 4589–4596.

    CAS  PubMed  Google Scholar 

  32. Wang, J.; Lei, Y.; Xie, C.; Lu, W.; Yan, Z.; Gao, J.; Xie, Z.; Zhang, X.; Liu, M. Targeted gene delivery to glioblastoma using a C-end rule RGERPPR peptide-functionalised polyethylenimine complex. Int. J. Pharm. 2013, 458, 48–56.

    CAS  PubMed  Google Scholar 

  33. Golba, B.; Benetti, E. M.; De Geest, B. G. Biomaterials applications of cyclic polymers. Biomaterials 2021, 267, 120468.

    CAS  PubMed  Google Scholar 

  34. Ball, M.; Zhong, Y.; Fowler, B.; Zhang, B.; Li, P.; Etkin, G.; Paley, D. W.; Decatur, J.; Dalsania, A. K.; Li, H. Macrocyclization in the design of organic n-type electronic materials. J. Am. Chem. Soc. 2016, 138, 12861–12867.

    CAS  PubMed  Google Scholar 

  35. Miao, Z.; Esper, A. M.; Nadif, S. S.; Gonsales, S. A.; Sumerlin, B. S.; Veige, A. S. Semi-conducting cyclic copolymers of acetylene and propyne. React. Funct. Polym. 2021, 169, 105088.

    CAS  Google Scholar 

  36. Singh, M.; Dong, M.; Wu, W.; Nejat, R.; Tran, D. K.; Pradhan, N.; Raghavan, D.; Douglas, J. F.; Wooley, K. L.; Karim, A. Enhanced dielectric strength and capacitive energy density of cyclic polystyrene films. ACS Polym. Au 2022, 2, 324–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Freifelder, D.; Kleinschmidt, A. K.; Sinsheimer, R. L. Electron microscopy of single-stranded DNA: circularity of DNA ofbacteriophage φX174. Science 1964, 146, 254–255.

    CAS  PubMed  Google Scholar 

  38. Wasserman, S. A.; Cozzarelli, N. R. Biochemical topology: applications to DNA recombination and replication. Science 1986, 232, 951–960.

    CAS  PubMed  Google Scholar 

  39. Saether, O.; Craik, D. J.; Campbell, I. D.; Sletten, K.; Juul, J.; Norman, D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide Kalata B1. Biochemistry 1995, 34, 4147–4158.

    CAS  PubMed  Google Scholar 

  40. Haque, F. M.; Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433–444.

    CAS  PubMed  Google Scholar 

  41. Jr., T. G. F.; Flory, P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 1950, 21, 581–591.

    Google Scholar 

  42. Fox, T. G.; Flory, P. J. The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci. 1954, 14, 315–319.

    CAS  Google Scholar 

  43. Tito, N. B.; Lipson, J. E. G.; Milner, S. T. Lattice model of dynamic heterogeneity and kinetic arrest in glass-forming liquids. Soft Matter 2013, 9, 3173–3180.

    CAS  Google Scholar 

  44. White, R. P.; Lipson, J. E. G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49, 3987–4007.

    CAS  Google Scholar 

  45. Rique-Lurbet, L.; Schappacher, M.; Deffieux, A. A new strategy for the synthesis of cyclic polystyrenes: principle and application. Macromolecules 1994, 27, 6318–6324.

    CAS  Google Scholar 

  46. Zhang, L.; Elupula, R.; Grayson, S. M.; Torkelson, J. M. Suppression of the fragility-confinement effect via low molecular weight cyclic or ring polymer topology. Macromolecules 2017, 50, 1147–1154.

    CAS  Google Scholar 

  47. Gao, L.; Oh, J.; Tu, Y.; Chang, T.; Li, C. Y. Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer 2019, 170, 198–203.

    CAS  Google Scholar 

  48. Schappacher, M.; Deffieux, A. Synthesis of macrocyclic poly(2-chloroethyl vinyl ether)s. Makromol. Chem., Rapid Commun. 1991, 12, 447–453.

    CAS  Google Scholar 

  49. Deffieux, A.; Schappacher, M.; Rique-Lurbet, L. New routes to macrocyclic polymers of controlled dimensions. Polymer 1994, 35, 4562–4568.

    CAS  Google Scholar 

  50. Kammiyada, H.; Ouchi, M.; Sawamoto, M. A study on physical properties of cyclic poly(vinyl ether)s synthesized via ring-expansion cationic polymerization. Macromolecules 2017, 50, 841–848.

    CAS  Google Scholar 

  51. Xu, X.; Zhou, N.; Zhu, J.; Tu, Y.; Zhang, Z.; Cheng, Z.; Zhu, X. The first example of main-chain cyclic azobenzene polymers. Macromol. Rapid Commun. 2010, 31, 1791–1797.

    CAS  PubMed  Google Scholar 

  52. Pipertzis, A.; Hossain, M. D.; Monteiro, M. J.; Floudas, G. Segmental dynamics in multicyclic polystyrenes. Macromolecules 2018, 51, 1488–1497.

    CAS  Google Scholar 

  53. Gan, Y.; Dong, D.; Hogen-Esch, T. E. Effects of lithium bromide on the glass transition temperatures of linear and macrocyclic poly(2-vinylpyridine) and polystyrene. Macromolecules 1995, 28, 383–385.

    CAS  Google Scholar 

  54. Nossarev, G. G.; Hogen-Esch, T. E. Synthesis and thermal properties of macrocyclic poly(2-vinylnaphthalene) containing single 1,4-benzylidene or 9,10-anthracenylidene groups. Macromolecules 2002, 35, 1604–1610.

    CAS  Google Scholar 

  55. Clarson, S. J.; Dodgson, K.; Semlyen, J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass-transition temperatures and crystallization behavior. Polymer 1985, 26, 930–934.

    CAS  Google Scholar 

  56. Baljon, A. R. C.; Mendoza, G.; Balabaev, N. K.; Lyulin, A. V. Glass-transition temperature of cyclic polystyrene: a computational study. Polym. Sci. Ser. A 2021, 63, 356–362.

    CAS  Google Scholar 

  57. Chremos, A.; Douglas, J. F. Communication: when does a branched polymer become a particle. J. Chem. Phys. 2015, 143, 111104.

    PubMed  Google Scholar 

  58. Hogen-Esch, T. E.; Sundararajan, J.; Toreki, W. Synthesis and characterization of topologically interesting vinyl polymers. Makromol. Chem., Macromol. Symp. 1991, 47, 23–42.

    CAS  Google Scholar 

  59. Yang, A. J. M.; Di Marzio, E. A. Glass temperature of polymer ring systems. Macromolecules 1991, 24, 6012–6018.

    CAS  Google Scholar 

  60. Di Marzio, E. A.; Guttman, C. M. The glass temperature of polymer rings. Macromolecules 1987, 20, 1403–1407.

    CAS  Google Scholar 

  61. Clarson, S. J.; Semlyen, J. A.; Dodgson, K. Cyclic polysiloxanes: 4. Glass transition temperatures of poly(phenylmethylsiloxanes). Polymer 1991, 32, 2823–2827.

    CAS  Google Scholar 

  62. Liu, X.; Chen, D.; He, Z.; Zhang, H.; Hu, H. Molecular weight dependence of the glass transition of cyclic polystyrene. Polym. Commun. 1991, 32, 123–125.

    CAS  Google Scholar 

  63. Kirst, K. U.; Kremer, F.; Pakula, T.; Hollingshurst, J. Molecular dynamics of cyclic and linear poly(dimethylsiloxanes). Colloid. Polym. Sci. 1994, 272, 1420–1429.

    CAS  Google Scholar 

  64. Dudowicz, J.; Freed, K. F.; Douglas, J. F. Generalized entropy theory of polymer glass formation. Adv. Chem. Phys. 2008, 137, 125–222.

    CAS  Google Scholar 

  65. Xu, W. S.; Douglas, J. F.; Sun, Z. Y. Polymer glass formation: role of activation free energy, configurational entropy, and collective motion. Macromolecules 2021, 54, 3001–3033.

    CAS  Google Scholar 

  66. Xu, W. S.; Sun, Z. Y. A thermodynamic perspective on polymer glass formation. Chinese J. Polym. Sci. 2023, 10.1007/s10118-023-2896-4.

  67. Yuan, Q. L.; Yang, Z.; Xu, W. S. Advances in the generalized entropy theory of polymer glass formation. Sci. Sin.: Chim. 2023, 53, 616–627.

    Google Scholar 

  68. Foreman, K. W.; Freed, K. F. Lattice cluster theory of multicomponent polymer systems: chain semiflexibility and specific interactions. Adv. Chem. Phys. 1998, 103, 335–390.

    CAS  Google Scholar 

  69. Xu, W.-S.; Freed, K. F. Lattice cluster theory for polymer melts with specific interactions. J. Chem. Phys. 2014, 141, 044909.

    PubMed  Google Scholar 

  70. Adam, G.; Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139–146.

    CAS  Google Scholar 

  71. Vargas-Lara, F.; Pazmiño Betancourt, B. A.; Douglas, J. F. Influence of knot complexity on glass-formation in low molecular mass ring polymer melts. J. Chem. Phys. 2019, 150, 101103.

    PubMed  Google Scholar 

  72. Braghetto, A.; Kundu, S.; Baiesi, M.; Orlandini, E. Machine learning understands knotted polymers. Macromolecules 2023, 56, 2899–2909.

    CAS  Google Scholar 

  73. Santangelo, P. G.; Roland, C. M.; Chang, T.; Cho, D.; Roovers, J. Dynamics near the glass temperature of low molecular weight cyclic polystyrene. Macromolecules 2001, 34, 9002–9005.

    CAS  Google Scholar 

  74. Pazmino Betancourt, B. A.; Douglas, J. F.; Starr, F. W. String model for the dynamics of glass-forming liquids. J. Chem. Phys. 2014, 140, 204509.

    PubMed  PubMed Central  Google Scholar 

  75. Freed, K. F. Communication: towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion. J. Chem. Phys. 2014, 141, 141102.

    PubMed  Google Scholar 

  76. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    CAS  Google Scholar 

  77. Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33, 3628–3631.

    CAS  Google Scholar 

  78. Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237–5247.

    CAS  Google Scholar 

  79. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  80. Lammps version: October 03, 2020. available at: http://lammps.sandia.gov.

  81. Xu, W. S.; Douglas, J. F.; Freed, K. F. Influence of cohesive energy on the thermodynamic properties of a model glass-forming polymer melt. Macromolecules 2016, 49, 8341–8354.

    CAS  Google Scholar 

  82. De Gennes, P. G. Scaling Concepts in Polymer Physics. Cornell University Press: Ithaca, New York, 1979.

    Google Scholar 

  83. Wittmer, J. P.; Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Meyer, H.; Baschnagel, J. Why polymer chains in a melt are not random walks. Europhys. Lett. 2007, 77, 56003.

    Google Scholar 

  84. Wittmer, J. P.; Beckrich, P.; Meyer, H.; Cavallo, A.; Johner, A.; Baschnagel, J. Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments. Phys. Rev. E 2007, 76, 011803.

    CAS  Google Scholar 

  85. Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford University Press: 1987.

  86. Xu, W. S.; Douglas, J. F.; Xu, X. Molecular dynamics study of glass formation in polymer melts with varying chain stiffness. Macromolecules 2020, 53, 4796–4809.

    CAS  Google Scholar 

  87. Xu, W. S.; Douglas, J. F.; Xia, W.; Xu, X. Investigation of the temperature dependence of activation volume in glass-forming polymer melts under variable pressure conditions. Macromolecules 2020, 53, 6828–6841.

    CAS  Google Scholar 

  88. Xu, W. S.; Douglas, J. F.; Xu, X. Role of cohesive energy in glass formation of polymers with and without bending constraints. Macromolecules 2020, 53, 9678–9697.

    CAS  Google Scholar 

  89. Xu, X.; Douglas, J. F.; Xu, W. S. Influence of side-chain length and relative rigidities of backbone and side chains on glass formation of branched polymers. Macromolecules 2021, 44, 6327–6341.

    Google Scholar 

  90. Douglas, J. F.; Xu, W. S. Equation of state and entropy theory approach to thermodynamic scaling in polymeric glass-forming liquids. Macromolecules 2021, 54, 3247–3269.

    CAS  Google Scholar 

  91. Yang, Z.; Xu, X.; Xu, W. S. Influence of ionic interaction strength on glass formation of an ion-containing polymer melt. Macromolecules 2021, 54, 9587–9601.

    CAS  Google Scholar 

  92. Xu, X.; Xu, W. S. Melt properties and string model description of glass formation in graft polymers of different side-chain lengths. Macromolecules 2022, 55, 3221–3235.

    CAS  Google Scholar 

  93. Pazmino Betancourt, B. A.; Starr, F. W.; Douglas, J. F. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt. J. Chem. Phys. 2018, 148, 104508.

    PubMed  Google Scholar 

  94. Starr, F. W.; Douglas, J. F.; Sastry, S. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 2013, 138, 12A541.

    PubMed  PubMed Central  Google Scholar 

  95. Zhang, H.; Zhong, C.; Douglas, J. F.; Wang, X.; Cao, Q.; Zhang, D.; Jiang, J. Z. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. J. Chem. Phys. 2015, 142, 164506.

    PubMed  Google Scholar 

  96. Kincaid, J. F.; Eyring, H.; Stearn, A. E. The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem. Rev. 1941, 28, 301–365.

    CAS  Google Scholar 

  97. Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill Book Company, Incorporated: 1941.

  98. Xu, W.-S.; Douglas, J. F.; Freed, K. F. Stringlike cooperative motion explains the influence of pressure on relaxation in a model glass-forming polymer melt. ACS Macro Lett. 2016, 5, 1375–1380.

    CAS  PubMed  Google Scholar 

  99. Xu, W.-S.; Douglas, J. F.; Freed, K. F. Influence of cohesive energy on relaxation in a model glass-forming polymer melt. Macromolecules 2016, 49, 8355–8370.

    CAS  Google Scholar 

  100. Vogel, H. The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 1921, 22, 645–646.

    CAS  Google Scholar 

  101. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355.

    CAS  Google Scholar 

  102. Tammann, G.; Hesse, W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257.

    CAS  Google Scholar 

  103. Hanakata, P. Z.; Douglas, J. F.; Starr, F. W. Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 2014, 5, 4163.

    PubMed  Google Scholar 

  104. Pazmino Betancourt, B. A.; Hanakata, P. Z.; Starr, F. W.; Douglas, J. F. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2966–2971.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hanakata, P. Z.; Pazmino Betancourt, B. A.; Douglas, J. F.; Starr, F. W. A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. J. Chem. Phys. 2015, 142, 234907.

    PubMed  Google Scholar 

  106. Hall, R. W.; Wolynes, P. G. The aperiodic crystal picture and free energy barriers in glasses. J. Chem. Phys. 1987, 86, 2943–2948.

    CAS  Google Scholar 

  107. Simmons, D. S.; Cicerone, M. T.; Zhong, Q.; Tyagi, M.; Douglas, J. F. Generalized localization model of relaxation in glass-forming liquids. Soft Matter 2012, 8, 11455–11461.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Götze, W. Complex dynamics of glass-forming liquids: A mode-coupling theory. Oxford University Press on Demand: 2008, Vol. 143.

  109. Flory, P. J.; Vrij, A. Melting points of linear-chain homologs. the normal paraffin hydrocarbons. J. Am. Chem. Soc. 1963, 85, 3548–3553.

    CAS  Google Scholar 

  110. Sokolov, A. P.; Novikov, V. N.; Ding, Y. Why many polymers are so fragile. J. Phys.: Condens. Matter 2007, 19, 205116.

    Google Scholar 

  111. Dalle-Ferrier, C.; Kisliuk, A.; Hong, L.; Carini, G.; Carini, G.; D’Angelo, G.; Alba-Simionesco, C.; Novikov, V. N.; Sokolov, A. P. Why many polymers are so fragile: a new perspective. J. Chem. Phys. 2016, 145, 154901.

    CAS  PubMed  Google Scholar 

  112. Xu, W. S.; Freed, K. F. Generalized entropy theory of glass formation in polymer melts with specific interactions. Macromolecules 2015, 48, 2333–2343.

    CAS  Google Scholar 

  113. Xu, W. S.; Freed, K. F. Influence of cohesive energy and chain stiffness on polymer glass formation. Macromolecules 2014, 47, 6990–6997.

    CAS  Google Scholar 

  114. Ruan, D.; Simmons, D. S. Glass formation near covalently grafted interfaces: ionomers as a model case. Macromolecules 2015, 48, 2313–2323.

    CAS  Google Scholar 

  115. Xu, W. S.; Douglas, J. F.; Freed, K. F. Influence of pressure on glass formation in a simulated polymer melt. Macromolecules 2017, 50, 2585–2598.

    CAS  Google Scholar 

  116. Zhang, W.; Starr, F. W.; Douglas, J. F. Collective motion in the interfacial and interior regions of supported polymer films and its relation to relaxation. J. Phys. Chem. B 2019, 123, 5935–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fan, J.; Emamy, H.; Chremos, A.; Douglas, J. F.; Starr, F. W. Dynamic heterogeneity and collective motion in star polymer melts. J. Chem. Phys. 2020, 152, 054904.

    CAS  PubMed  Google Scholar 

  118. Aichele, M.; Gebremichael, Y.; Starr, F. W.; Baschnagel, J.; Glotzer, S. C. Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. J. Chem. Phys. 2003, 119, 5290–5304.

    CAS  Google Scholar 

  119. Gebremichael, Y.; Schrøder, T. B.; Starr, F. W.; Glotzer, S. C. Spatially correlated dynamics in a simulated glass-forming polymer melt: analysis of clustering phenomena. Phys. Rev. E 2001, 64, 051503.

    CAS  Google Scholar 

  120. Hung, J. H.; Simmons, D. S. Do string-like cooperative motions predict relaxation times in glass-forming liquids. J. Phys. Chem. B 2020, 124, 266–276.

    CAS  PubMed  Google Scholar 

  121. Kauzmann, W.; Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc. 1940, 62, 3113–3125.

    CAS  Google Scholar 

  122. Jeong, C.; Douglas, J. F. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. J. Chem. Phys. 2015, 143, 144905.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22222307 and 21973089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Chun Jiang or Wen-Sheng Xu.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, XY., Yang, ZY., Yuan, QL. et al. Understanding Mass Dependence of Glass Formation in Ring Polymers. Chin J Polym Sci 41, 1447–1461 (2023). https://doi.org/10.1007/s10118-023-3004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3004-5

Keywords

Navigation