Skip to main content
Log in

Synthesis of Helical Poly(phenylacetylene)s Carrying Dendritic Pendants with Varied Branching Densities Through Polymerization in Different Solvents

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Helical poly(phenylacetylene)s (PPAs) have received extensive attention because of their features in dynamic chirality and promising applications. Therefore, understanding relationship among the polymer molecular structures, polymerization conditions and tunability of their chirality is of key scientific value. Recently, we developed a novel class of dendronized PPAs carrying 3-fold dendritic oligo(ethylene glycols) (OEGs) via alanine linkage, and found that these bulky polymers exhibited tunable helical conformations through thermally-mediated dehydration and aggregation. Herein, we report on synthesis of a homologous series of dendronized PPAs that carry 2-fold, 3-fold or 6-fold dendritic OEG pendants, and focus on effects of molecular topological structures, peripheral units and polymerization solvents on the thermoresponsiveness and their conformation switching behaviors. Effects of branching density and peripheral units (ethoxyl or methoxyl) of the dendritic OEG pendants were examined, and found to play a decisive role on the helical conformation and thermoresponsiveness of these dendronized PPAs due to their different bulkiness and overall hydrophilicity. In addition, different polymerization solvents were checked for their possible influence on the polymerization, thermoresponsive behavior and the chirality of the resulting polymers. For polymerization in selective solvents like water or methanol, the obtained dendronized PPAs exhibited weak thermal transitions, while polymerization in non-selective solvent like THF furnished PPAs with characteristic thermoresponsive behavior, indicating that solvents were involved in the process of polymerization of the dendronized macromonomers. More interestingly, different chiralities of the PPAs through polymerization in various solvents were retained, irrelevant to the purification process and solvents treatments. This work suggests that the topological structures together with polymerization solvents can modulate the thermoresponsive behavior and helical conformation of the dendronized PPAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okamoto, Y. Helical polymers for efficient enantiomer separation. Adv. Polym. Sci. 2013, 261, 391–414.

    Article  CAS  Google Scholar 

  2. Leigh, T.; Fernandez-Trillo, P. Helical polymers for biological and medical applications. Nat. Rev. Chem. 2020, 4, 291–310.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y.; Deng, J. Chiral helical polymer materials derived from achiral monomers and their chiral applications. Polym. Chem. 2020, 11, 5407–5423.

    Article  CAS  Google Scholar 

  4. Zheng, Z. G.; Lu, Y. Q.; Li, Q. Photoprogrammable mesogenic soft helical architectures: a promising avenue toward future chirooptics. Adv. Mater. 2020, 32, 1905318.

    Article  CAS  Google Scholar 

  5. Li, S. Y.; Gao, R. T.; Chen, Z.; Liu, N.; Wu, Z. Q. Advances in circularly polarized luminescence materials based on helical polymers. J. Mater. Chem. C 2023, 11, 1242–1250.

    Article  CAS  Google Scholar 

  6. Nakano, T.; Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 2001, 101, 4013–4038.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799–5867.

    Article  CAS  PubMed  Google Scholar 

  8. Scanga, R. A.; Reuther, J. F. Helical polymer self-assembly and chiral nanostructure formation. Polym. Chem. 2021, 12, 1857–1897.

    Article  CAS  Google Scholar 

  9. Wen, T.; Wang, H. F.; Li, M. C.; Ho, R. M. Homochiral evolution in self-assembled chiral polymers and block copolymers. Acc. Chem. Res. 2017, 50, 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, L.; Wang, T.; Shen, Z.; Liu, M. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv. Mater. 2016, 28, 1044–1059.

    Article  CAS  PubMed  Google Scholar 

  11. Bisoyi, H. K.; Li, Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew. Chem. Int. Ed. 2016, 55, 2994–3010.

    Article  CAS  Google Scholar 

  12. Leiras, S.; Freire, F.; Quiñoá, E.; Riguera, R. Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chem. Sci. 2015, 6, 246–253.

    Article  CAS  PubMed  Google Scholar 

  13. Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: synthesis, structures and functions. Chem. Rev. 2009, 109, 6102–6211.

    Article  CAS  PubMed  Google Scholar 

  14. Freire, F.; Quiñoá, E.; Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev. 2016, 116, 1242–1271.

    Article  CAS  PubMed  Google Scholar 

  15. Rey-Tarrio, F.; Guisan-Ceinos, S.; Cuerva, J. M.; Miguel, D.; Ribagorda, M.; Quinoa, E.; Freire, F. Photostability and dynamic helical behavior in chiral poly(phenylacetylene)s with a preferred screw-sense. Angew. Chem. Int. Ed. 2022, 61, 202207623.

    Article  Google Scholar 

  16. Yashima, E.; Maeda, K. Chirality-responsive helical polymers. Macromolecules 2008, 41, 3–12.

    Article  CAS  Google Scholar 

  17. Okamoto, Y.; Nakano, T. Asymmetric polymerization. Chem. Rev. 1994, 94, 349–372.

    Article  CAS  Google Scholar 

  18. Zhang, A.; Ropero, F. R.; Zanuy, D., Alemán, C.; Meijer, E.; Schlüter, A. A rigid, chiral, dendronized polymer with a thermally stable, right-handed helical conformation. Chem. Eur. J. 2008, 14, 6924–6934.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, K.; Zhang, X.; Tao, X.; Yan, J.; Kuang, G., Li, W., Zhang, A. Lysine-based dendronized polymers with preferred chirality. Polym. Chem. 2012, 3, 2708–2711.

    Article  CAS  Google Scholar 

  20. Aoki, T.; Kaneko, T.; Maruyama, N.; Sumi, A.; Takahashi, M.; Sato, T.; Teraguchi, M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J. Am. Chem. Soc. 2003, 125, 6346–6347.

    Article  CAS  PubMed  Google Scholar 

  21. Percec, V.; Aqad, E.; Peterca, M.; Rudick, J. G.; Lemon, L.; Ronda, J. C.; De, B. B.; Heiney, P. A.; Meijer, E. W. Steric communication of chiral information observed in dendronized polyacetylenes. J. Am. Chem. Soc. 2006, 128, 16365–16372.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda, K.; Mochizuki, H.; Osato, K.; Yashima, E. Stimuli-responsive helical poly(phenylacetylene)s bearing cyclodextrin pendants that exhibit enantioselective gelation in response to chirality of a chiral amine and hierarchical super-structured helix formation. Macromolecules 2011, 44, 3217–3226.

    Article  CAS  Google Scholar 

  23. Leiras, S.; Freire, F.; Seco, J.; Quinoa, E.; Ricardo, R. Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chem. Sci. 2013, 4, 2735–2743.

    Article  CAS  Google Scholar 

  24. Guan, X.; Wang, S.; Shi, G.; Zhang, J.; Wan, X. Thermoswitching of helical inversion of dynamic polyphenylacetylenes through cis-trans isomerization of amide pendants. Macromolecules 2021, 54, 4592–4600.

    Article  CAS  Google Scholar 

  25. Xu, A.; Masuda, T.; Zhang, A. Stimuli-responsive polyacetylenes and dendronized poly(phenylacetylene)s. Polym. Rev. 2017, 57, 138–158.

    Article  CAS  Google Scholar 

  26. Wamura, H.; Takeyama, Y.; Yamamoto, M.; Kurihara, H.; Morino, K.; Yashima, E. Chirality responsive helical poly(phenylacetylene) bearing L-proline pendants. Chirality 2011, 23, 35–42.

    Google Scholar 

  27. Sanda, F.; Shiotsuki, M.; Masuda, T. Controlled polymerization of phenylacetylenes using well-defined Rhodium catalysts. Macromol. Symp. 2015, 350, 67–75.

    Article  CAS  Google Scholar 

  28. Motoshige, R.; Mawatari, Y.; Motoshige, A.; Yoshida, Y.; Sasaki, T.; Yoshimizu, H.; Suzuki, T.; Tsujita, Y.; Tabata, M. Mutual conversion between stretched and contracted helices accompanied by a drastic change in color and spatial structure of poly(phenylacetylene) prepared with a [Rh(nbd)Cl]2-amine catalyst. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 752–759.

    Article  CAS  Google Scholar 

  29. Miyagawa, T.; Furuko, A.; Maeda, K.; Katagiri, H.; Furusho, Y.; Yashima, E. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer. J. Am. Chem. Soc. 2005, 127, 5018–5019.

    Article  CAS  PubMed  Google Scholar 

  30. Maeda, K.; Mochizuki, H.; Watanabe, M.; Yashima, E. Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli. J. Am. Chem. Soc. 2006, 128, 7639–7650.

    Article  CAS  PubMed  Google Scholar 

  31. Li, S.; Liu, K.; Kuang, G.; Masuda, T.; Zhang, A. Thermoresponsive helical poly(phenylacetylene)s. Macromolecules 2014, 47, 3288–3296.

    Article  CAS  Google Scholar 

  32. Suarez-Picado, E.; Quinoa, E.; Riguera, R.; Freire, F. Poly(phenylacetylene) amines: a general route to water-soluble helical polyamines. Chem. Mater. 2018, 30, 6908–6914.

    Article  CAS  Google Scholar 

  33. Cheuk, K.; Lam, J.; Lai, L.; Tang, B. Syntheses, hydrogen-bonding interactions, tunable chain helicities, and cooperative supramolecular associations and dissociations of poly(phenylacetylene)s bearing L-valine pendants: toward the development of proteomimetic polyenes. Macromolecules 2003, 36, 9752–9762.

    Article  CAS  Google Scholar 

  34. Okoshi, K.; Sakurai, S. I.; Ohsawa, S.; Kumaki, J.; Yashima, E. Control of main-chain stiffness of a helical poly(phenylacetylene) by switching on and off the intramolecular hydrogen bonding through macromolecular helicity inversion. Angew. Chem. Int. Ed. 2006, 45, 8173–8176.

    Article  CAS  Google Scholar 

  35. Sakurai, S.-i.; Okoshi, K.; Kumaki, J.; Yashima, E. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite. J. Am. Chem. Soc. 2006, 128, 5650–5651.

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez, R.; Quinoa, E.; Riguera, R.; Freire F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc. 2016, 138, 30, 9620–9628.

    Article  Google Scholar 

  37. Sakai, R.; Satoh, T.; Kakuchi, T. Polyacetylenes as colorimetric and fluorescent chemosensor for anions. Polym. Rev. 2017, 57, 159–174.

    Article  CAS  Google Scholar 

  38. Bergueiro, J.; Freire, F.; Wendler, E.; Seco, J. M.; Quinoa, E.; Riguera, R. The ON/OFF switching by metal ions of the “sergeants and soldiers” chiral amplification effect on helical poly(phenylacetylene)s. Chem. Sci. 2014, 5, 2170–2176.

    Article  CAS  Google Scholar 

  39. Cao, Y.; Ren, L.; Zhang, Y.; Lu, X.; Zhang, X.; Yan, J.; Li, W.; Masuda, T.; Zhang, A. Remarkable effects of anions on the chirality of thermoresponsive helical dendronized poly(phenylacetylene)s. Macromolecules 2021, 54, 7621–7631.

    Article  CAS  Google Scholar 

  40. Tabata, M.; Mawatari, Y. Emerging π-conjugated stretched and contracted helices and their mutual conversions of substituted polyacetylenes prepared using an organo-rhodium catalyst. Polym. Rev. 2017, 57, 65–88.

    Article  CAS  Google Scholar 

  41. Fukushima, T.; Kimura, H.; Tsuchihara, K. Color and chiroptical control of poly(phenylacetylene) films with chiral hydroxyl group. Macromolecules 2009, 42, 8619–8626.

    Article  CAS  Google Scholar 

  42. Yoshida, Y.; Mawatari, Y.; Motoshige, A.; Motoshige, R.; Hiraoki, T.; Wagner, M.; Müllen, K.; Tabata, M. Accordion-like oscillation of contracted and stretched helices of polyacetylenes synchronized with the restricted rotation of side chains. J. Am. Chem. Soc. 2013, 135, 4110–4116.

    Article  CAS  PubMed  Google Scholar 

  43. Motoshige, R.; Mawatari, Y.; Motoshige, A.; Yoshida, Y.; Sasaki, T.; Yoshimizu, H.; Suzuki, T.; Tsujita, Y.; Tabata, M. “Mutual conversion between stretched and contracted helices accompanied by a drastic change in color and spatial structure of poly(phenylacetylene) prepared with a [Rh(nbd)Cl]2-amine catalyst”. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 752–759.

    Article  CAS  Google Scholar 

  44. Wang, F.; Zhou, C.; Liu, K.; Yan, J.; Li, W.; Masuda, T.; Zhang, A. Thermoresponsive dendronized poly(phenylacetylene)s showing tunable helicity. Macromolecules 2019, 52, 8631–8642.

    Article  CAS  Google Scholar 

  45. Kim, Y.; Shin, S.; Lee, M. Development of toroidal nanostructures by self-assembly: rational designs and applications. Acc. Chem. Res. 2013, 46, 2888–2897.

    Article  CAS  PubMed  Google Scholar 

  46. Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom1, R.; Picken, S. J.; Nolte, R. J. M.; Mendes, E.; Rowan, A. E. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655.

    Article  CAS  PubMed  Google Scholar 

  47. Hu, G. X.; Li, W.; Hu, Y. L.; Xu, A. Q.; Yan, J. T.; Liu, L. X.; Zhang, X. C.; Liu, K.; Zhang, A. Water-soluble chiral polyisocyanides showing thermoresponsive behavior. Macromolecules 2013, 46, 1124–1132.

    Article  CAS  Google Scholar 

  48. Xu, G.; Zhang, J.; Jia, R.; Li, W.; Zhang, A. Topological effects of dendronized polymers on their thermoresponsiveness and microconfinement. Macromolecules 2022, 55, 630–642.

    Article  CAS  Google Scholar 

  49. Li, W.; Zhang, A.; Chen, Y.; Feldman, K.; Wu, H.; Schluter, A. D. Low toxic, thermoresponsive dendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions. Chem. Commun. 2008, 5948–5950.

  50. Xu, G.; Zhang, J.; Qi, M.; Zhang, X.; Li, W.; Zhang, A. Thermoresponsive dendritic oligoethylene glycols. Phys. Chem. Chem. Phys. 2022, 24, 11848–11855.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, A.; Zhang, B.; Wachtersbach, E.; Schmidt, M.; Schluter, A. D. Efficient synthesis of high molar mass, first- to fourth-generation distributed dendronized polymers by the macromonomer approach. Chem. Eur. J. 2003, 9, 6083–6092.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971160 and 21971161) and Program for Professor of Special Appointment (No. Eastern Scholar TP2019039) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Li or Afang Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2991_MOESM1_ESM.pdf

Synthesis of Helical Poly(phenylacetylene)s Carrying Dendritic Pendants with Varied Branching Densities Through Polymerization in Different Solvents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZZ., Zhang, YN., Qiu, HY. et al. Synthesis of Helical Poly(phenylacetylene)s Carrying Dendritic Pendants with Varied Branching Densities Through Polymerization in Different Solvents. Chin J Polym Sci 41, 1543–1554 (2023). https://doi.org/10.1007/s10118-023-2991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2991-6

Keywords

Navigation