Skip to main content
Log in

Conventional Radical and RAFT Alternating Copolymerizations of Hydroxyalkyl Vinyl Ethers and Dialkyl Maleates

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The alternating copolymerization of hydroxyalkyl vinyl ethers and dialkyl maleates is investigated by conventional radical polymerization and reversible addition-fragmentation chain transfer polymerization (RAFT). The influence of comonomer structure, comonomer feeding ratios, and monomer concentrations on the copolymerization and the copolymer structure have been investigated systematically. With 2-hydroxyethyl vinyl ether (HEVE) and dimethyl maleates (DMM) as comonomers, a well-defined alternating copolymer is prepared with Mn=3400 and Mw/Mn=1.93 up to 71.6% monomer. The alternating sequential chain structure of the copolymers has been proved by both NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The experimental reactivity ratios and theoretical calculated highest occupied molecular orbital and the lowest unoccupied molecular orbital of vinyl ethers and alkyl maleates support that these monomer pairs have tendency to form alternating copolymers. With 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate as the RAFT agent, the molecular weight of HEVE and DMM copolymer increases with the monomer conversion, demonstrating a controlled radical polymerization feature with well-controlled molecular weight and relatively narrower molecular weight distribution. With alternating copolymer of HEVE and DMM as macro-CTA (Mn=5200 and Mw/Mn=1.46), both the chain extension with HEVE and DMM (Mn=10400 and Mw/Mn=1.72) and block copolymerization with vinyl acetate have been successfully achieved (Mn=8500 and Mw/Mn=1.52).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Odian, G. in Principles of Polymerization, 4th Ed., John Wiley & Sons, Hoboken, New Jersey, 2004, p. 198–349.

    Book  Google Scholar 

  2. Fueno, T.; Kamachi, M. Ab initio SCF study of the addition of the methyl radical to vinyl compounds. Macromolecules 1988, 21, 908–912.

    Article  CAS  Google Scholar 

  3. Kamachi, M.; Tanaka, K.; Kuwae, Y. ESR studies on radical polymerization of vinyl ethers. J. Polym. Sci., Part A: Polym. Chem. 1986, 24, 925–929.

    Article  CAS  Google Scholar 

  4. Miyamoto, M.; Ishii, T.; Sakai, T.; Kimura, Y. Radical polymerization of oligoethylene glycol methyl vinyl ethers in protic polar solvents. Macromol. Chem. Phys. 1998, 199, 119–125.

    Article  CAS  Google Scholar 

  5. Sugihara, S.; Kawamoto, Y.; Maeda, Y. Direct radical polymerization of vinyl ethers: reversible addition-fragmentation chain transfer polymerization of hydroxyfunctional vinyl ethers. Macromolecules 2016, 49, 1563–1574.

    Article  CAS  Google Scholar 

  6. Matsumoto, A.; Nakana, T.; Oiwa, M. Radical polymerization of butyl vinyl ether. Makromol. Chem., Rapid Commun. 1983, 4, 277–279.

    Article  CAS  Google Scholar 

  7. Tran-Do, M. L.; Habas, J. P.; Ameduri, B. Oxygen-tolerant alternating copolymerization of fluorinated monomers and vinyl ethers at mild temperature. ACS Appl. Polym. Mater. 2022, 4, 1401–1410.

    Article  CAS  Google Scholar 

  8. Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules 1984, 17, 265–268.

    Article  CAS  Google Scholar 

  9. Kamigaito, M.; Sawamoto, M. Synergistic advances in living cationic and radical polymerizations. Macromolecules. 2020, 53, 6749–6753.

    Article  CAS  Google Scholar 

  10. Knutson, P. C.; Teator, A. J.; Varner, T. P.; Kozuszek, C. T.; Jacky, P. E.; Leibfarth, F. A. Brønsted acid catalyzed stereoselective polymerization of vinyl ethers. J. Am. Chem. Soc. 2021, 143, 16388–16393.

    Article  CAS  PubMed  Google Scholar 

  11. Teator, A. J.; Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 2019, 363, 1439–1443.

    Article  CAS  Google Scholar 

  12. Sugihara, S.; Yoshida, A.; Kono, T.-A.; Takayama, T.; Maeda, Y. Controlled radical homopolymerization of representative cationically polymerizable vinyl ethers. J. Am. Chem. Soc. 2019, 141, 13954–13961.

    Article  CAS  PubMed  Google Scholar 

  13. Liao, Q.; Chen, D.; Zhang, X.; Ma, Y.; Zhao, C.; Yang, W. UV-assisted Li+-catalyzed radical grafting polymerization of vinyl ethers: A new strategy for creating hydrolysis-resistant and long-lived polymer brushes as a “smart” surface coating. Langmuir 2021, 37, 4102–4111.

    Article  CAS  PubMed  Google Scholar 

  14. Duan, J.; Gong, Y.; Chen, D.; Ma, Y.; Song, C.; Yang, W. Radical homopolymerization of vinyl ethers activated by Li+-π complexation in the presence of CH3OLi and LiI. Polym. Chem. 2022, 13, 1098–1106.

    Article  CAS  Google Scholar 

  15. Hao, X.; Fujimori, K.; Tucker, D. J.; Henry, P. C. An NMR determination of linkage configuration and monomer unit triad distribution in the copolymer of isobutyl vinyl ether and maleic anhydride. Eur. Polym. J. 2000, 36, 1145–1150.

    Article  CAS  Google Scholar 

  16. Ha, N. T. H.; Fujimori, K.; Henry, P. C.; Tucker, D. J. Assignment of 13C NMR chemical shift and microstructure of copolymers of 2-chloroethyl vinyl ether-maleic anhydride and n-butyl vinyl ethermaleic anhydride. Polym. Bull. 1999, 43, 81–85.

    Article  CAS  Google Scholar 

  17. Braun, D.; Hu, F. Polymers from non-homopolymerizable monomers by free radical processes. Prog. Polym. Sci. 2006, 31, 239–276.

    Article  CAS  Google Scholar 

  18. Ng, L. T.; Nguyen, D.; Adeloju, S. B. Photoinitiator-free UV grafting of styrene, a weak donor, with various electron-poor vinyl monomers to polypropylene film. Polym. Int. 2005, 54, 202–208.

    Article  CAS  Google Scholar 

  19. Xu, C.; Chen, C.; Jiang, J.; Zhao, C.; Ma, Y.; Yang, W. Monodisperse styrene-maleic anhydride-isoprene terpolymer microspheres with tunable crosslinking density prepared by self-stabilized precipitation polymerization. ACS Appl. Polym. Mater. 2022, 4, 7363–7372.

    Article  CAS  Google Scholar 

  20. Gaylord, N. G.; Maiti, S.; Patnaik, B. K.; Takahashi, A. Donoacceptor complexes in copolymerization. XXXVI. Alternating diene-dienophile copolymers. 4. Copolymerization of furan and 2-methylfuran with maleic anhydride. J. Macromol. Sci., Part A-Chem. 1972, 6, 1459–1480.

    Article  CAS  Google Scholar 

  21. Qiu, G. M.; Zhu, B. K.; Xu, Y. Y.; Geckeler, K. E. Synthesis of ultrahigh molecular weight poly(styrene-alt-maleic anhydride) in supercritical carbon dioxide. Macromolecules 2006, 39, 3231–3237.

    Article  CAS  Google Scholar 

  22. Rätzsch, M.; Vogl, O. Radical copolymerization of donor/acceptor monomers. Prog. Polym. Sci. 1991, 16, 279–301.

    Article  Google Scholar 

  23. Hawker, C. J., in Handbook of Radical Polymerization, 1st Ed., John Wiley & Sons, Hoboken, New Jersey, 2002, p. 463–521.

    Book  Google Scholar 

  24. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Article  CAS  Google Scholar 

  25. Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39, 4953–4959.

    Article  CAS  Google Scholar 

  26. Tang, W.; Tsarevsky, N. V.; Matyjaszewski, K. Determination of equilibrium constants for atom transfer radical polymerization. J. Am. Chem. Soc. 2006, 128, 1598–1604.

    Article  CAS  PubMed  Google Scholar 

  27. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559–5562.

    Article  CAS  Google Scholar 

  28. Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Livmg radical polymerization with reversible addition-fragmentation chain transfer (RAFT): direct ESR observation of intermediate radicals. Macromolecules 1999, 32, 5457–5459.

    Article  CAS  Google Scholar 

  29. Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living free radical polymerization with reversible addition- fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules 2003, 36, 1505–1513.

    Article  CAS  Google Scholar 

  30. Zhang, Z.; Hong, L.; Gao, Y.; Zhang, W. One-pot synthesis of POSS-containing alternating copolymers by RAFT polymerization and their microphase-separated nanostructures. Polym. Chem. 2014, 5, 4534–4541.

    Article  CAS  Google Scholar 

  31. You, Y.-Z.; Hong, C. Y.; Pan, C. Y. Controlled alternating copolymerization of St with MAh in the presence of DBTTC. Eur. Polym. J. 2002, 38, 1289–1295.

    Article  CAS  Google Scholar 

  32. Lee, H.; Pack, J. W.; Wang, W.; Thurecht, K. J.; Howdle, S. M. Synthesis and phase behavior of CO2-soluble hydrocarbon copolymer: poly(vinyl acetate-alt-dibutyl maleate). Macromolecules 2010, 46, 2276–2282.

    Article  Google Scholar 

  33. Sugihara, S.; Yoshida, A.; Fujita, S.; Maeda, Y. Design of hydroxyfunctionalized thermoresponsive copolymers: improved direct radical polymerization of hydroxy-functional vinyl ethers. Macromolecules 2017, 50, 8346–8356.

    Article  CAS  Google Scholar 

  34. Puts, G.; Venner, V.; Améduri, B.; Crouse, P. Conventional and RAFT copolymerization of tetrafluoroethylene with isobutyl vinyl ether. Macromolecules 2018, 51, 6724–6739.

    Article  CAS  Google Scholar 

  35. Zhang, C.; Chen, D.; Yang, W. Preparation of styrene-maleic anhydride-acrylamide terpolymer particles of uniform size and controlled composition via self-stabilized precipitation polymerization. Ind. Eng. Chem. Res. 2020, 59, 15087–15097.

    Article  CAS  Google Scholar 

  36. Wang, Y.; Zhang, X.; Ma, Y.; Chen, D.; Zhao, C.; Yang, W. Polythioethers with controlled α,ω-end groups prepared by visible light induced thiol-ene click polymerization of dithiol and divinyl ether with 4-(N,N-diphenylamino)benzaldehyde as organocatalyst. Macromol. Chem. Phys. 2020, 221, 1900557.

    Article  CAS  Google Scholar 

  37. Zografos, A.; Lynd, N. A.; Bates, F. S.; Hillmyer, M. A. Impact of macromonomer molar mass and feed composition on branch distributions in model graft copolymerizations. ACS Macro Lett. 2021, 10, 1622–1628.

    Article  CAS  Google Scholar 

  38. Fineman, M.; Ross, S. D. Quantitative investigation of X-ray diffraction by “amorphous” polymers and some other noncrystalline substances. J. Polym. Sci. 1950, 5, 269–281.

    Article  Google Scholar 

  39. Beckingham, B. S.; Sanoja, G. E.; Lynd, N. A. Simple and accurate determination of reactivity ratios using a nonterminal model of chain copolymerization. Macromolecules 2015, 48, 6922–6930.

    Article  CAS  Google Scholar 

  40. Cui, Z. H.; Aquino, A. J. A.; Sue, A. C. H.; Lischka, H. Analysis of charge transfer transitions in stacked π-electron donor-acceptor complexes. Phys. Chem. Chem. Phys. 2018, 20, 26957–26967.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed, R.; Manna, A. K. Molecular-scale engineering of the charge-transfer excited states in non-covalently bound Zn-porphyrin and carbon fullerene based donor-acceptor complex. Phys. Chem. Chem. Phys. 2020, 22, 14822–14831.

    Article  CAS  PubMed  Google Scholar 

  42. Duva, G.; Pithan, L.; Zeiser, C.; Reisz, B.; Dieterle, J.; Hofferberth, B.; Beyer, P.; Bogula, L.; Opitz, A.; Kowarik, S.; Hinderhofer, A.; Gerlach, A.; Schreiber, F. Thin-film texture and optical properties of donor/acceptor complexes. Diindenoperylene/F6TCNNQ vs alpha-sexithiophene/F6TCNNQ. J. Phy. Chem. C 2018, 122, 18705–18714.

    Article  CAS  Google Scholar 

  43. Ushakov, E. N.; Martyanov, T. P.; Vedernikov, A. I.; Efremova, A. A.; Moiseeva, A. A.; Kuz’mina, L. G.; Dmitrieva, S. N.; Howard, J. A. K.; Gromov, S. P. Highly stable supramolecular donor-acceptor complexes involving a bis(18-crown-6)azobenzene as weak donor: structure-property relationships. ACS Omega 2020, 5, 25993–26004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, B.; Qian, B. B.; Li, C. T.; Li, X. W.; Nie, H. X.; Yu, M. H.; Chang, Z. Donor-acceptor systems in metal-organic frameworks: design, construction, and properties. CrystEngComm 2022, 24, 5538–5551.

    Article  CAS  Google Scholar 

  45. Khan, E.; Shukla, A.; Srivastava, A.; Shweta; Tandon, P. Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: a combined DFT and AIM approach. New J. Chem. 2015, 39, 9800–9812.

    Article  CAS  Google Scholar 

  46. Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754.

    Article  CAS  PubMed  Google Scholar 

  47. Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722–725.

    Article  CAS  Google Scholar 

  48. Issa, Y. M.; Abdel-Latif, S. A.; El-Ansary, A. L.; Hassib, H. B. The synthesis, spectroscopic characterization, DFT/TD-DFT/PCM calculations of the molecular structure and NBO of the novel charge-transfer complexes of pyrazine Schiff base derivatives with aromatic nitro compounds. New J. Chem. 2021, 45, 1482–1499.

    Article  CAS  Google Scholar 

  49. Lewis, D. F. V.; Lake, B. G.; Ioannides, C.; Parke, D. V. Inhibition of rat hepatic aryl hydrocarbon hydroxylase activity by a series of 7-hydroxy coumarins: QSAR studies. Xenobiotica 1994, 24, 829–838.

    Article  CAS  PubMed  Google Scholar 

  50. Bora, S. R.; Kalita, D. J. Hopping transport in perylene diimide based organic solar cells: a DFT approach. New J. Chem. 2022, 46, 19357–19372.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22171017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hong Ma or Wan-Tai Yang.

Ethics declarations

Wan-Tai Yang is an editorial board member for Chinese Journal of Polymer Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Chen, D., Hu, GF. et al. Conventional Radical and RAFT Alternating Copolymerizations of Hydroxyalkyl Vinyl Ethers and Dialkyl Maleates. Chin J Polym Sci 41, 1856–1867 (2023). https://doi.org/10.1007/s10118-023-2989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2989-0

Keywords

Navigation