Skip to main content
Log in

Self-assembled Conformations of a Core-shell Comb-like Chain with Adjustable Architectural Parameters

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Combining Brownian dynamics simulations and self-consistent field theory, we demonstrate that the architectural parameters of core-shell comb-like chains have a decisive influence on their final self-assembled conformations. When the ratio of hydrophilic and hydrophobic segments is Ng,g:Ng,r = 3:1, no core-shell structure is observed, and unsegregated chains or clusters are substituted. When Ng,g:Ng,r = 3:2 or 3:3, the core-shell comb-like chains can be assembled into single micelles or structures where several small micelles are strung together by the backbone, which is similar to the pearl-necklace structure formed by the polyelectrolytes in poor solvent. With the increase of backbone length or grafting density, the probability of forming single micelles becomes lower, but the structures of two, three or more small micelles strung together are more observed. Our results indicate how to obtain the desired self-assembled structures of core-shell comb-like chains by regulating the architectural parameters, which could provide insights for the optimization of molecular design in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, T.; Dutta, S.; Kamble, Y.; Patel, B. B.; Wade, M. A.; Rogers, S. A.; Diao, Y.; Guironnet, D.; Sing, C. E. Materials design of highly branched bottlebrush polymers at the intersection of modeling, synthesis, processing, and characterization. Chem. Mater. 2022, 34, 1990–2024.

    CAS  Google Scholar 

  2. Xie, G.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules 2019, 20, 27–54.

    CAS  PubMed  Google Scholar 

  3. Lin, T. P.; Chang, A. B.; Chen, H. Y.; Liberman-Martin, A. L.; Bates, C. M.; Voegtle, M. J.; Bauer, C. A.; Grubbs, R. H. Control of grafting density and distribution in graft polymers by living ring-opening metathesis copolymerization. J. Am. Chem. Soc. 2017, 139, 3896–3903.

    CAS  PubMed  Google Scholar 

  4. Radzinski, S. C.; Foster, J. C.; Scannelli, S. J.; Weaver, J. R.; Arrington, K. J.; Matson, J. B. Tapered bottlebrush polymers: cone-shaped nanostructures by sequential addition of macromonomers. ACS Macro Lett. 2017, 6, 1175–1179.

    CAS  PubMed  Google Scholar 

  5. Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420.

    CAS  PubMed  Google Scholar 

  6. Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33, 759–785.

    CAS  Google Scholar 

  7. Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 2010, 43, 10326–10335.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, W.; Guo, J.; Wen, W.; Jia, Y. G.; Liu, S. Nano-carriers based on pH-sensitive star-shaped copolymers for drug-controlled release. Materials 2019, 12, 1610.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Unsal, H.; Onbulak, S.; Calik, F.; Er-Rafik, M.; Schmutz, M.; Sanyal, A.; Rzayev, J. Interplay between molecular packing, drug loading, and core cross-linking in bottlebrush copolymer micelles. Macromolecules 2017, 50, 1342–1352.

    CAS  Google Scholar 

  10. Zhang, M.; Drechsler, M.; Müller, A. H. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem. Mater. 2004, 16, 537–543.

    CAS  Google Scholar 

  11. Watanabe, M.; Mizukami, K. Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules 2012, 45, 7128–7134.

    CAS  Google Scholar 

  12. Maw, M.; Morgan, B. J.; Dashtimoghadam, E.; Tian, Y.; Bersenev, E. A.; Maryasevskaya, A. V.; Ivanov, D. A.; Matyjaszewski, K.; Dobrynin, A. V.; Sheiko, S. S. Brush architecture and network elasticity: path to the design of mechanically diverse elastomers. Macromolecules 2022, 55, 2940–2951.

    CAS  Google Scholar 

  13. Pakula, T.; Zhang, Y.; Matyjaszewski, K.; il Lee H.; Boerner, H.; Qin, S.; Berry, G. C. Molecular brushes as super-soft elastomers. Polymer 2006, 47, 7198–7206.

    CAS  Google Scholar 

  14. Li, M.; Li, G. L.; Zhang, Z.; Li, J.; Neoh, K. G.; Kang, E. T. Self-assembly of pH responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer 2010, 51, 3377–3386.

    CAS  Google Scholar 

  15. Li, X.; ShamsiJazeyi, H.; Pesek, S. L.; Agrawal, A.; Hammouda, B.; Verduzco, R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter 2014, 10, 2008–2015.

    CAS  PubMed  Google Scholar 

  16. Mei, G.; Zheng, Y.; Fu, Y.; Huo, M. Polymerization-induced self-assembly of random bottlebrush copolymers. Polym. Chem. 2022, 13, 5389–5396.

    CAS  Google Scholar 

  17. Sugihara, S.; Blanazs, A.; Armes, S. P.; Ryan, A. J.; Lewis, A. L. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J. Am. Chem. Soc. 2011, 133, 15707–15713.

    CAS  PubMed  Google Scholar 

  18. Morozova, S.; Lodge, T. P. Conformation of methylcellulose as a function of poly(ethylene glycol) graft density. ACS Macro Lett. 2017, 6, 1274–1279.

    CAS  PubMed  Google Scholar 

  19. Morozova, S.; Schmidt, P. W.; Bates, F. S.; Lodge, T. P. Effect of poly(ethylene glycol) grafting density on methylcellulose fibril formation. Macromolecules 2018, 51, 9413–9421.

    CAS  Google Scholar 

  20. Pan, X.; Ding, M.; Li, L. Experimental validation on average conformation of a comblike polystyrene library in dilute solutions: universal scaling laws and abnormal sec elution behavior. Macromolecules 2021, 54, 11019–11031.

    CAS  Google Scholar 

  21. Chen, Y.; Zhou, H.; Sun, Z.; Li, H.; Huang, H.; Liu, L.; Chen, Y. Shell of amphiphilic molecular bottlebrush matters as unimolecular micelle. Polymer 2018, 149, 316–324.

    CAS  Google Scholar 

  22. Rzayev, J. Molecular bottlebrushes: new opportunities in nanomaterials fabrication. ACS Macro Lett. 2012, 1, 1146.

    CAS  PubMed  Google Scholar 

  23. Nese, A.; Li, Y.; Averick, S.; Kwak, Y.; Konkolewicz, D.; Sheiko, S. S.; Matyjaszewski, K. Synthesis of amphiphilic poly(n-vinylpyrrolidone)-b-poly(vinyl acetate) molecular bottlebrushes. ACS Macro Lett. 2012, 1, 227–231.

    CAS  PubMed  Google Scholar 

  24. Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary perspective: polymers with complex architectures. Macromolecules 2017, 50, 1253–1290.

    CAS  Google Scholar 

  25. Wang, M.; Xu, Z.; Shi, Y.; Cai, F.; Qiu, J.; Yang, G.; Hua, Z.; Chen, T. TEMPO-functionalized nanoreactors from bottlebrush copolymers for the selective oxidation of alcohols in water. J. Org. Chem. 2021, 86, 8027–8035.

    CAS  PubMed  Google Scholar 

  26. Nguyen, H. N.; Ezzat, M.; Huang, C. J. Lysolipid-inspired amphiphilic polymer nanostructures: implications for drug delivery. ACS Appl. Nano Mater. 2022, 5, 107–112.

    CAS  Google Scholar 

  27. Kent, E. W.; Lewoczko, E. M.; Zhao, B. Effect of buffer anions on pearl-necklace morphology of tertiary amine-containing binary heterografted linear molecular bottlebrushes in acidic aqueous buffers. Langmuir 2020, 36, 13320–13330.

    CAS  PubMed  Google Scholar 

  28. Pang, X.; He, Y.; Jung, J.; Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 2016, 353, 1268–1272.

    CAS  PubMed  Google Scholar 

  29. Zhao, B. Shape-changing bottlebrush polymers. J. Phys. Chem. B 2021, 125, 6373–6389.

    CAS  PubMed  Google Scholar 

  30. Alaboalirat, M.; Qi, L.; Arrington, K. J.; Qian, S.; Keum, J. K.; Mei, H.; Littrell, K. C.; Sumpter, B. G.; Carrillo, J. M. Y.; Verduzco, R.; Matson, J. B. Amphiphilic bottlebrush block copolymers: analysis of aqueous self-assembly by small-angle neutron scattering and surface tension measurements. Macromolecules 2019, 52, 465–476.

    CAS  Google Scholar 

  31. Lewoczko, E. M.; Kelly, M. T.; Kent, E. W.; Zhao, B. Effects of temperature on chaotropic anion-induced shape transitions of star molecular bottlebrushes with heterografted poly(ethylene oxide) and poly(n,n-dialkylaminoethyl methacrylate) side chains in acidic water. Soft Matter 2021, 17, 6566–6579.

    CAS  PubMed  Google Scholar 

  32. Müllner, M. Molecular polymer brushes in nanomedicine. Macromol. Chem. Phys. 2016, 217, 2209–2222.

    Google Scholar 

  33. Kuperkar, K.; Patel, D.; Atanase, L. I.; Bahadur, P. Amphiphilic block copolymers: their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers 2022, 14.

  34. Eetezadi, S.; Ekdawi, S. N.; Allen, C. The challenges facing block copolymer micelles for cancer therapy: in vivo barriers and clinical translation. Adv. Drug Deliv. Rev. 2015, 91, 7–22.

    CAS  PubMed  Google Scholar 

  35. Chen, W. H.; Luo, G. F.; Lei, Q.; Jia, H. Z.; Hong, S.; Wang, Q. R.; Zhuo, R. X.; Zhang, X. Z. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem. Commun. 2015, 51, 465–468.

    CAS  Google Scholar 

  36. De, Nicola A.; Hezaveh, S.; Zhao, Y.; Kawakatsu, T.; Roccatano, D.; Milano, G. Micellar drug nanocarriers and biomembranes: how do they interact? Phys. Chem. Chem. Phys. 2014, 16, 5093–5105.

    Google Scholar 

  37. Xie, G.; Krys, P.; Tilton, R. D.; Matyjaszewski, K. Heterografted molecular brushes as stabilizers for water-in-oil emulsions. Macromolecules 2017, 50, 2942–2950.

    CAS  Google Scholar 

  38. Lyubimov, I.; Wessels, M. G.; Jayaraman, A. Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers. Macromolecules 2018, 51, 7586–7599.

    CAS  Google Scholar 

  39. Zhang, M.; Breiner, T.; Mori, H.; Müller, A. H. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution. Polymer 2003, 44, 1449–1458.

    CAS  Google Scholar 

  40. Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; Tian, P.; Yu, D.; Song, J.; Liu, X.; Chao, Y.; Xiao, W.; Tang, X. Strategies for improving the payload of small molecular drugs in polymeric micelles. J. Control. Rel. 2017, 261, 352–366.

    CAS  Google Scholar 

  41. Onbulak, S.; Rzayev, J. Synthesis and one-dimensional assembly of cylindrical polymer nanoparticles prepared from tricomponent bottlebrush copolymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3868–3874.

    CAS  Google Scholar 

  42. Du, J. Z.; Tang, L. Y.; Song, W. J.; Shi, Y.; Wang, J. Evaluation of polymeric micelles from brush polymer with poly(ε-caprolactone)-b-poly (ethylene glycol) side chains as drug carrier. Biomacromolecules 2009, 10, 2169–2174.

    CAS  PubMed  Google Scholar 

  43. Yang, Y.; Lin, S.; She, Feng X.; Pan, Q. Synthesis and characterization of core shell bottlebrush polymers via controllable polymerization. ChemistrySelect 2022, 7, e202201040.

    CAS  Google Scholar 

  44. Zhao, P.; Liu, L.; Feng, X.; Wang, C.; Shuai, X.; Chen, Y. Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol. Rapid Commun. 2012, 33, 1351–1355.

    CAS  PubMed  Google Scholar 

  45. Kripotou, S.; Psylla, C.; Kyriakos, K.; Raftopoulos, K. N.; Zhao, J.; Zhang, G.; Pispas, S.; Papadakis, C. M.; Kyritsis, A. Structure and crystallization behavior of poly(ethylene oxide) (PEO) chains in core-shell brush copolymers with poly(propylene oxide)-block-poly(ethylene oxide) side chains. Macromolecules 2016, 49, 5963–5977.

    CAS  Google Scholar 

  46. Onbulak, S.; Rzayev, J. Cylindrical nanocapsules from photo-cross-linkable core-shell bottlebrush copolymers. Polym. Chem. 2015, 6, 764–771.

    CAS  Google Scholar 

  47. Li, C.; Yuan, L.; Zhang, X.; Zhang, A.; Pan, Y.; Wang, Y.; Qu, W.; Hao, H.; Algharib, S. A.; Chen, D.; Xie, S. Core-shell nanosystems designed for effective oral delivery of polypeptide drugs. J. Control. Rel. 2022, 352, 540–555.

    CAS  Google Scholar 

  48. Müllner, M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem. Commun. 2022, 58, 5683–5716.

    Google Scholar 

  49. Simonova, M.; Ilgach, D.; Kaskevich, K.; Nepomnyashaya, M.; Litvinova, L.; Filippov, A.; Yakimansky, A. Novel amphiphilic polyfluorene-graft-(polymethacrylic acid) brushes: synthesis, conformation, and self-assembly. Polymers 2021, 13, 4429.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, C. C.; Huang, S. Y.; Fan, W. L.; Lee, A. W.; Chiu, C. W.; Lee, D. J.; Lai, J. Y. Water-soluble single-chain polymeric nanoparticles for highly selective cancer chemotherapy. ACS Appl. Polym. Mater. 2021, 3, 474–484.

    CAS  Google Scholar 

  51. Takano, S.; Islam, W.; Nakazawa, K.; Maeda, H.; Sakurai, K.; Fujii, S. Phosphorylcholine-grafted molecular bottlebrush-doxorubicin conjugates: high structural stability, long circulation in blood, and efficient anticancer activity. Biomacromolecules 2021, 22, 1186–1196.

    CAS  PubMed  Google Scholar 

  52. Zhang, T.; Wang, Y.; Ma, X.; Hou, C.; Lv, S.; Jia, D.; Lu, Y.; Xue, P.; Kang, Y.; Xu, Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater. Sci. 2020, 8, 473–484.

    CAS  PubMed  Google Scholar 

  53. Liu, R.; Lindsey, J. S. Single-polymer-single-cargo strategy packages hydrophobic fluorophores in aqueous solution with retention of inherent brightness. ACS Macro Lett. 2019, 8, 79–83.

    CAS  PubMed  Google Scholar 

  54. Li, H.; Liu, H.; Nie, T.; Chen, Y.; Wang, Z.; Huang, H.; Liu, L.; Chen, Y. Molecular bottlebrush as a unimolecular vehicle with tunable shape for photothermal cancer therapy. Biomaterials 2018, 178, 620–629.

    CAS  PubMed  Google Scholar 

  55. Luo, H.; Szymusiak, M.; Garcia, E. A.; Lock, L. L.; Cui, H.; Liu, Y.; Herrera-Alonso, M. Solute-triggered morphological transitions of an amphiphilic heterografted brush copolymer as a single-molecule drug carrier. Macromolecules 2017, 50, 2201–2206.

    CAS  Google Scholar 

  56. Kashyap, S.; Singh, N.; Surnar, B.; Jayakannan, M. Enzyme and thermal dual responsive amphiphilic polymer core-shell nanoparticle for doxorubicin delivery to cancer cells. Biomacromolecules 2016, 17, 384–398.

    CAS  PubMed  Google Scholar 

  57. Yu, Y.; Chen, C. K.; Law, W. C.; Sun, H.; Prasad, P. N.; Cheng, C. A degradable brush polymer-drug conjugate for pH-responsive release of doxorubicin. Polym. Chem. 2015, 6, 953–961.

    CAS  Google Scholar 

  58. Huang, K.; Johnson, M.; Rzayev, J. Synthesis of degradable organic nanotubes by bottlebrush molecular templating. ACS Macro Lett. 2012, 1, 892–895.

    CAS  PubMed  Google Scholar 

  59. Tseng, Y. C.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Atypical vesicles and membranes with monolayer and multilayer structures formed by graft copolymers with diblock sidechains: nonlamellar structures and curvature-enhanced permeability. Soft Matter 2022, 18, 7559–7568.

    CAS  PubMed  Google Scholar 

  60. Tang, H.; Li, Y.; Lahasky, S. H.; Sheiko, S. S.; Zhang, D. Core-shell molecular bottlebrushes with helical polypeptide backbone: synthesis, characterization, and solution conformations. Macromolecules 2011, 44, 1491–1499.

    CAS  Google Scholar 

  61. Maher, M. J.; Jones, S. D.; Zografos, A.; Xu, J.; Schibur, H. J.; Bates, F. S. The order-disorder transition in graft block copolymers. Macromolecules 2018, 51, 232–241.

    CAS  Google Scholar 

  62. Chaudhuri, A.; Ramesh, K.; Kumar, D. N.; Dehari, D.; Singh, S.; Kumar, D.; Agrawal, A. K. Polymeric micelles: a novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2022, 103886.

  63. Mohammadi, E.; Joshi, S. Y.; Deshmukh, S. A. A review of computational studies of bottlebrush polymers. Comp. Mater. Sci. 2021, 199, 110720.

    CAS  Google Scholar 

  64. Tang, Z.; Pan, X.; Zhou, H.; Li, L.; Ding, M. Conformation of a comb-like chain free in solution and confined in a nanochannel: from linear to bottlebrush structure. Macromolecules 2022, 55, 8668–8675.

    CAS  Google Scholar 

  65. Hao, P.; Mai, X.; Chen, Q.; Ding, M. Conformation of an amphiphilic comblike copolymer in a selective solvent. Chinese J. Polym. Sci. 2023, DOI: https://doi.org/10.1007/s10118-023-2912-8.

  66. Yethiraj, A. A Monte Carlo simulation study of branched polymers. J. Chem. Phys. 2006, 125, 204901.

    PubMed  Google Scholar 

  67. Hsu, H. P.; Paul, W.; Rathgeber, S.; Binder, K. Characteristic length scales and radial monomer density profiles of molecular bottle-brushes: simulation and experiment. Macromolecules 2010, 43, 1592–1601.

    CAS  Google Scholar 

  68. Wessels, M. G.; Jayaraman, A. Molecular dynamics simulation study of linear, bottlebrush, and star-like amphiphilic block polymer assembly in solution. Soft Matter 2019, 15, 3987–3998.

    CAS  PubMed  Google Scholar 

  69. Bejagam, K. K.; Singh, S. K.; Ahn, R.; Deshmukh, S. A. Unraveling the conformations of backbone and side chains in thermosensitive bottlebrush polymers. Macromolecules 2019, 52, 9398–9408.

    CAS  Google Scholar 

  70. Dutta, S.; Wade, M. A.; Walsh, D. J.; Guironnet, D.; Rogers, S. A.; Sing, C. E. Dilute solution structure of bottlebrush polymers. Soft Matter 2019, 15, 2928–2941.

    CAS  PubMed  Google Scholar 

  71. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A moleculardynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    CAS  Google Scholar 

  72. Reddy, G.; Yethiraj, A. Implicit and explicit solvent models for the simulation of dilute polymer solutions. Macromolecules 2006, 39, 8536–8542.

    CAS  Google Scholar 

  73. Ding, M.; Chen, Q.; Duan, X.; Shi, T. Flow-driven translocation of a diblock copolymer through a nanopore. J. Phys. Chem. B 2019, 123, 8848–8852.

    CAS  PubMed  Google Scholar 

  74. Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237–5247.

    CAS  Google Scholar 

  75. Ermak, D. L.; McCammon, J. A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352–1360.

    CAS  Google Scholar 

  76. Kumar, S.; Larson, R. G. Brownian dynamics simulations of flexible polymers with spring-spring repulsions. J. Chem. Phys. 2001, 114, 6937–6941.

    CAS  Google Scholar 

  77. Xie, N.; Liu, M.; Deng, H.; Li, W.; Qiu, F.; Shi, A. C. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. J. Am. Chem. Soc. 2014, 136, 2974–2977.

    CAS  PubMed  Google Scholar 

  78. Limbach, H. J.; Holm, C. Single-chain properties of polyelectrolytes in poor Solvent. J. Phys. Chem. B 2003, 107, 8041–8055.

    CAS  Google Scholar 

  79. Kramarenko, E. Y.; Pevnaya, O. S.; Khokhlov, A. R. Stoichiometric polyelectrolyte complexes as comb copolymers. J. Chem. Phys. 2005, 122, 084902.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Project of Yili Normal University (No. 2022YSYB009) and the National Natural Science Foundation of China (No. 2019M651340). We gratefully acknowledge HZWTECH for providing computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Duan or Ming-Ming Ding.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, HL., Zhou, HW., Duan, C. et al. Self-assembled Conformations of a Core-shell Comb-like Chain with Adjustable Architectural Parameters. Chin J Polym Sci 41, 1439–1446 (2023). https://doi.org/10.1007/s10118-023-2982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2982-7

Keywords

Navigation