Skip to main content
Log in

Molecular Dynamics Simulations of Stretch-Induced Crystal Changes in Crystallized Polyethylene/Carbon Nanotubes Nanocomposites

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Understanding deformation mechanisms in semi-crystalline polymers during stretching is useful for guiding the processing of high-performance polymer products. In the current work, molecular dynamics simulations were performed to investigate the crystal changes in crystallized polyethylene/carbon nanotube nanocomposites during uniaxial stretching. Both crystal fragmentation and melting occur at low strains. Crystals with small sizes are easier to melt, while those with large sizes would break into smaller crystals. In addition, crystals in interfacial regions are more likely to melt or break due to the orientation motion of carbon nanotubes. It was also found that the recrystallization process is closely related to the stretch-induced orientation of chain segments. After orientation of chain segments along stretching direction is saturated, the recrystallization of highly oriented segments dominates. The current simulation findings are effective complements to the theories of the mechanism of plastic deformation in semicrystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ning, N. Y.; Fu, S. R.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci. 2012, 37, 1425–1455.

    CAS  Google Scholar 

  2. Nie, Y. J.; Huang, G. S.; Qu, L L.; Wang, X. A.; Weng, G. S.; Wu, J. R. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52, 3234–3242.

    CAS  Google Scholar 

  3. Yang, J. H.; Wang, C. Y.; Wang, K.; Zhang, Q.; Chen, F.; Du, R. N.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016–7023.

    CAS  Google Scholar 

  4. Xu, J. Z.; Zhong, G. J.; Hsiao, B. S.; Fu, Q.; Li, Z. M. Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog. Polym. Sci. 2014, 39, 555–593.

    CAS  Google Scholar 

  5. Crosby, A. J.; Lee, J. Y. Polymer nanocomposites: the “nano” effect on mechanical properties. Polym. Rev. 2007, 47, 217–229.

    CAS  Google Scholar 

  6. Li, L. Y.; Li, C. Y.; Ni, C. Y. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 1692–1699.

    CAS  PubMed  Google Scholar 

  7. Li, L. Y.; Li, B.; Hood, M. A.; Li, C. Y. Carbon nanotube induced polymer crystallization: the formation of nanohybrid shish-kebabs. Polymer 2009, 50, 953–965.

    CAS  Google Scholar 

  8. Nie, Y. J.; Zhang, R. J.; Zheng, K. S.; Zhou, Z. P. Nucleation details of nanohybrid shish-kebabs in polymer solutions studied by molecular simulations. Polymer 2015, 76, 1–7.

    CAS  Google Scholar 

  9. Nie, Y. J.; Hao, T. F.; Gu, Z. Z.; Wang, Y.; Liu, Y.; Zhang, D.; Wei, Y.; Li, S. J.; Zhou, Z. P. Relaxation and crystallization of oriented polymer melts with anisotropic filler networks. J. Phys. Chem. B 2017, 121, 1426–1437.

    CAS  PubMed  Google Scholar 

  10. Gu, Z. Z.; Yang, R.; Yang, J.; Qiu, X. Y.; Liu, R. J.; Liu, Y.; Zhou, Z. P.; Nie, Y. J. Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions. Comput. Mater. Sci. 2018, 147, 217–226.

    CAS  Google Scholar 

  11. Liu, R. J.; Yang, L. Y.; Qiu, X. Y.; Wu, H. T.; Zhang, Y. Q.; Liu, Y.; Zhou, Z. P.; Ming, Y. Q.; Hao, T. F.; Nie, Y. J. One-dimensional nanofiller induced crystallization in random copolymers studied by dynamic Monte Carlo simulations. Mol. Simulat. 2020, 46, 669–677.

    CAS  Google Scholar 

  12. Liu, R. J.; Zhou, Z. P.; Liu, Y.; Liang, Z. P.; Ming, Y. Q.; Hao, T. F.; Nie, Y. J. Epitaxial orientation and localized microphase separation prior to formation of nanohybrid shish-kebabs induced by one-dimensional nanofiller in miscible diblock copolymers with selective interaction. Polymer 2019, 166, 72–80.

    CAS  Google Scholar 

  13. Liu, R. J.; Zhou, Z. P.; Liu, Y.; Liang, Z. P.; Ming, Y. Q.; Hao, T. F.; Nie, Y. J. Differences in crystallization behaviors between cyclic and linear polymer nanocomposites. Chinese J. Polym. Sci. 2020, 38, 1034–1044.

    CAS  Google Scholar 

  14. Alonso, Y.; Martini, R. E.; Iannoni, A.; Terenzi, A.; Kenny, J. M.; Barbosa, S. E. Polyethylene/sepiolite fibers. Influence of drawing and nanofiller content on the crystal morphology and mechanical properties. Polym. Eng. Sci. 2015, 55, 1096–1103.

    CAS  Google Scholar 

  15. Yang, J.; Liu, Z. F.; Zhou, Z. P.; Ming, Y. Q.; Li, S. M.; Hao, T. F.; Nie, Y. J. Studying the effects of carbon nanotube contents on stretch-induced crystallization behavior of polyethylene/carbon nanotube nanocomposites using molecular dynamics simulations. Phys. Chem. Chem. Phys. 2022, 24, 16021–16030.

    CAS  PubMed  Google Scholar 

  16. Nie, Y. J.; Yang, J.; Liu, Z. F.; Zhou, Z. P.; Ming, Y. Q.; Hao, T. F. Precursor formation and crystal nucleation in stretched polyethylene/carbon nanotube nanocomposites. Polymer 2022, 239, 124438.

    CAS  Google Scholar 

  17. An, M. F.; Xu, H. J.; Lv, Y.; Tian, F.; Gu, Q.; Wang, Z. B. The effect of chitin nanocrystal on the structural transition of shish-kebab to fibrillar crystals of ultra-high molecular weight polyethylene/chitin nanocrystal fibers during hot-stretching process. Eur. Polym. J. 2017, 96, 463–473.

    CAS  Google Scholar 

  18. Hiss, R.; Lynn, S. H.; Strobl, C. G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403.

    CAS  Google Scholar 

  19. Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 1974, 9, 2034–2051.

    CAS  Google Scholar 

  20. Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272, 226–229.

    CAS  Google Scholar 

  21. Men, Y. F.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91, 095502.

    PubMed  Google Scholar 

  22. Pawlak, A.; Galeski, A.; Rozanski, A. Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 2014, 39, 921–958.

    CAS  Google Scholar 

  23. Séguéla, R. Plasticity of semi-crystalline polymers: crystal slip versus melting-recrystallization. e-Polymers 2007, 7, 382–391.

    Google Scholar 

  24. Peterlin, A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971, 6, 490–508.

    CAS  Google Scholar 

  25. Men, Y. F. Critical strains determine the tensile deformation mechanism in semicrystalline polymers. Macromolecules 2020, 53, 9155–9157.

    CAS  Google Scholar 

  26. Hu, W. B. Polymer features in crystallization. Chinese J. Polym. Sci. 2022, 40, 545–555.

    CAS  Google Scholar 

  27. Hu, W. B. The physics of polymer chain-folding. Phys. Rep. 2018, 747, 1–50.

    CAS  Google Scholar 

  28. Lv, F.; Chen, X. W.; Wan, C. X.; Su, F. M.; Ji, Y. X.; Lin, Y. F.; Li, X. Y.; Li, L. B. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting. Macromolecules 2017, 50, 6385–6395.

    CAS  Google Scholar 

  29. Wang, Z.; Liu, Y. P.; Liu, C. T.; Yang, J. S.; Li, L. B. Understanding structure-mechanics relationship of high density polyethylene based on stress induced lattice distortion. Polymer 2019, 160, 170–180.

    CAS  Google Scholar 

  30. Schrauwen, B. A. G.; Janssen, R. P. M.; Govaert, L. E.; Meijer, H. E. H. Intrinsic deformation behavior of semicrystalline polymers. Macromolecules 2004, 37, 6069–6078.

    CAS  Google Scholar 

  31. Lu, Y.; Men, Y. F. Initiation, development and stabilization of cavities during tensile deformation of semicrystalline polymers. Chinese J. Polym. Sci. 2018, 36, 1195–1199.

    CAS  Google Scholar 

  32. Liao, T.; Zhao, X. T.; Yang, X.; Coates, P.; Whiteside, B.; Barker, D.; Thompson, G.; Lai, Y. Q.; Jiang, Z. Y.; Men, Y. F. In situ synchrotron small angle X-ray scattering investigation of structural formation of polyethylene upon micro-injection molding. Polymer 2021, 215, 123390.

    CAS  Google Scholar 

  33. Li, L. B. Chain flexibility and connectivity: the uniqueness of polymer crystallization. Chinese J. Polym. Sci. 2023, 41, 7–13.

    CAS  Google Scholar 

  34. Nie, C.; Peng, F.; Cao, R. K.; Cui, K. P.; Sheng, J. F.; Chen, W.; Li, L. B. Recent progress in flow-induced polymer crystallization. J. Polym. Sci. 2022, 60, 3149–3175.

    CAS  Google Scholar 

  35. Cui, K. P.; Ma, Z.; Tian, N.; Su, F. M.; Liu, D.; Li, L. B. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev. 2018, 118, 1840–1886.

    CAS  PubMed  Google Scholar 

  36. Nie, Y. J.; Gao, H. H.; Yu, M. H.; Hu, Z. M.; Reiter, G.; Hu, W. B. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 2013, 54, 3402–3407.

    CAS  Google Scholar 

  37. Nie, Y. J.; Gao, H. H.; Hu, W. B. Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers. Polymer 2014, 55, 1267–1272.

    CAS  Google Scholar 

  38. Nie, Y. J.; Zhao, Y. F.; Matsuba, G.; Hu, W. B. Shish-kebab crystallites initiated by shear fracture in bulk polymers. Macromolecules 2018, 51, 480–487.

    CAS  Google Scholar 

  39. Zhu, Q.; Zhou, Z. P.; Hao, T. F.; Nie, Y. J. Significantly improved stereocomplexation ability in cyclic block copolymers. Chinese J. Polym. Sci. 2023, 41, 432–441.

    CAS  Google Scholar 

  40. Xu, Y.; Yang, J.; Liu, Z. F.; Zhou, Z. P.; Liang, Z. P.; Hao, T. F.; Nie, Y. J. Stereocomplex crystallization in asymmetric diblock copolymers studied by dynamic Monte Carlo simulations. Chinese J. Polym. Sci. 2021, 39, 632–639.

    CAS  Google Scholar 

  41. Liu, R. J.; Nie, Y. J.; Ming, Y. Q.; Hao, T. F.; Zhou, Z. P. Simulations on polymer nanocomposite crystallization. Polym. Crystal. 2021, 4, e10214.

    CAS  Google Scholar 

  42. Ko, M. J.; Waheed, N.; Lavine, M. S.; Rutledge, G. C. Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation. J. Chem. Phys. 2004, 121, 2823–2832.

    CAS  PubMed  Google Scholar 

  43. Graham, R. S. Understanding flow-induced crystallization in polymers: a perspective on the role of molecular simulations. J. Rheol. 2019, 63, 203–214.

    CAS  Google Scholar 

  44. Xiao, H. Y.; Luo, C. F.; Yan, D. D.; Sommer, J. U. Molecular dynamics simulation of crystallization cyclic polymer melts as compared to their linear counterparts. Macromolecules 2017, 50, 9796–9806.

    CAS  Google Scholar 

  45. Ma, R.; Xu, D.; Luo, C. F., Effect of crystallization and entropy contribution upon the mechanical response of polymer nano-fibers: a steered molecular dynamics study. Chinese J. Polym. Sci. 2023, 41, 465–474.

    CAS  Google Scholar 

  46. Lavine, M. S.; Waheed, N.; Rutledge, G. C. Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension. Polymer 2003, 44, 1771–1779.

    CAS  Google Scholar 

  47. Yang, J. S.; Tang, X. L.; Wang, Z.; Xu, T. Y.; Tian, F. C.; Ji, Y. X.; Li, L. B. Coupling between intra- and inter-chain orderings in flow-induced crystallization of polyethylene: a non-equilibrium molecular dynamics simulation study. J. Chem. Phys. 2017, 146, 014901.

    PubMed  Google Scholar 

  48. Nie, C.; Peng, F.; Xu, T. Y.; Ding, Y. W.; Sheng, J. F.; Chen, W.; Li, L. B. Biaxial stretch-induced crystallization of polymers: a molecular dynamics simulation study. Macromolecules 2021, 54, 9794–9803.

    CAS  Google Scholar 

  49. Yamamoto, T. Molecular dynamics simulation of stretch-induced crystallization in polyethylene: emergence of fiber structure and molecular network. Macromolecules 2019, 52, 1695–1706.

    CAS  Google Scholar 

  50. Nie, Y. J.; Gu, Z. Z.; Wei, Y.; Hao, T. F.; Zhou, Z. P., Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polym. J. 2017, 49, 309–317.

    CAS  Google Scholar 

  51. Zhang, W. L.; Larson, R. G. Direct all-atom molecular dynamics simulations of the effects of short chain branching on polyethylene oligomer crystal nucleation. Macromolecules 2018, 51, 4762–4769.

    CAS  Google Scholar 

  52. Iyer, K.; Muthukumar, M. Langevin dynamics simulation of crystallization of ring polymers. J. Chem. Phys. 2018, 148, 244904.

    PubMed  Google Scholar 

  53. Guo, Y. Q.; Wang, J. P.; Luo, W.; Hu, W. B. Dynamic Monte Carlo simulations of strain-induced crystallization in multiblock copolymers: effects of dilution. Soft Matter 2022, 18, 3376–3383.

    CAS  PubMed  Google Scholar 

  54. Guo, Y. Q.; Luo, W.; Zhang, J.; Hu, W. B. Dynamic Monte Carlo simulations of strain-induced crystallization in multiblock copolymers: effects of microphase separation. Polymer 2023, 264, 125512.

    CAS  Google Scholar 

  55. Lee, S.; Rutledge, G. C. Plastic deformation of semicrystalline polyethylene by molecular simulation. Macromolecules 2011, 44, 3096–3108.

    CAS  Google Scholar 

  56. Kim, J. M.; Locker, R.; Rutledge, G. C. Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation. Macromolecules 2014, 47, 2515–2528.

    CAS  Google Scholar 

  57. Yeh, I. C.; Andzelm, J. W.; Rutledge, G. C. Mechanical and structural characterization of semicrystalline polyethylene under tensile deformation by molecular dynamics simulations. Macromolecules 2015, 48, 4228–4239.

    CAS  Google Scholar 

  58. Yamamoto, T. Molecular dynamics in fiber formation of polyethylene and large deformation of the fiber. Polymer 2013, 54, 3086–3097.

    CAS  Google Scholar 

  59. Jabbari-Farouji, S.; Rottler, J.; Lame, O.; Makke, A.; Perez, M.; Barrat, J. L. Plastic deformation mechanisms of semicrystalline and amorphous polymers. ACS Macro Lett. 2015, 4, 147–150.

    CAS  PubMed  Google Scholar 

  60. Jabbari-Farouji, S.; Lame, O.; Perez, M.; Rottler, J.; Barrat, J. L. Role of the intercrystalline tie chains network in the mechanical response of semicrystalline polymers. Phys. Rev. Lett. 2017, 118, 217802.

    PubMed  Google Scholar 

  61. In’t Veld, P. J.; Rutledge, G. C. Temperature-dependent elasticity of a semicrystalline interphase composed of freely rotating chains. Macromolecules 2003, 36, 7358–7365.

    Google Scholar 

  62. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  63. Paul, W.; Yoon, D. Y.; Smith, G. D. An optimized united atom model for simulations of polymethylene melts. J. Chem. Phys. 1995, 103, 1702–1709.

    CAS  Google Scholar 

  64. Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.-Condens. Mat. 2002, 14, 783–802.

    CAS  Google Scholar 

  65. Marco, C.; Naffakh, M.; Gomez, M. A.; Santoro, G.; Ellis, G. The crystallization of polypropylene in multiwall carbon nanotube-based composites. Polym. Compos. 2011, 32, 324–333.

    CAS  Google Scholar 

  66. Liu, Z. F.; Zhou, Z. P.; Ming, Y. Q.; Zhang, S. H.; Hao, T. F.; Nie, Y. J. Molecular dynamics simulations of nucleation details in stretched polyethylene. Polymer 2020, 195, 122442.

    CAS  Google Scholar 

  67. Xu, Z. H.; Niu, Y. H.; Wang, Z. G.; Li, H.; Yang, L.; Qiu, J.; Wang, H. Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl. Mater. Interfaces 2011, 3, 3744–3753.

    CAS  PubMed  Google Scholar 

  68. Razavi-Nouri, M.; Ghorbanzadeh-Ahangari, M.; Fereidoon, A.; Jahanshahi, M. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym. Test. 2009, 28, 46–52.

    CAS  Google Scholar 

  69. Duan, T. C.; Li, Y. G.; Song, T.; Yao, G. B.; Jin, J.; Wang, Z. B. Uniaxial tensile deformation of microinjection molded PCL/SWCNTs nanocomposites: effect of interfacial “soft epitaxy” on the structural evolution as studied by synchrotron SAXS and WAXD techniques. Polymer 2020, 198, 122526.

    CAS  Google Scholar 

  70. Matsuo, M.; Hirota, K.; Fujita, K.; Kawai, H. Studies on the deformation mechanism of polyethylene spherulites by the orientation distribution function of crystallites. Macromolecules 1978, 11, 1000–1007.

    CAS  Google Scholar 

  71. Xu, J.; Heck, B.; Ye, H. M.; Jiang, J.; Tang, Y. R.; Liu, J.; Guo, B. H.; Reiter, R.; Zhou, D. S.; Reiter, G. Stabilization of nuclei of lamellar polymer crystals: insights from a comparison of the hoffman-weeks line with the crystallization line. Macromolecules 2016, 49, 2206–2215.

    CAS  Google Scholar 

  72. Reiter, G. Some unique features of polymer crystallisation. Chem. Soc. Rev. 2014, 43, 2055–2065.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52173020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jing Nie.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2974_MOESM1_ESM.pdf

Molecular Dynamics Simulations of Stretch-Induced Crystal Changes in Crystallized Polyethylene/Carbon Nanotubes Nanocomposites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YH., Yang, J., Zhou, ZP. et al. Molecular Dynamics Simulations of Stretch-Induced Crystal Changes in Crystallized Polyethylene/Carbon Nanotubes Nanocomposites. Chin J Polym Sci 41, 1425–1438 (2023). https://doi.org/10.1007/s10118-023-2974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2974-7

Keywords

Navigation