Skip to main content

Advertisement

Log in

Paclitaxel Prodrug Nanomedicine for Potential CT-imaging Guided Breast Cancer Therapy

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nanotheranostics, which combine the therapeutic and diagnostic functions in one integrated system, have received extensive attentions in cancer treatments because they enable non-invasive diagnosis, tumor-targeted drug delivery, and real-time monitoring of therapeutic response. However, due to the high systemic toxicity of commonly used chemotherapeutics, current treatment still has limitations. Herein, to simultaneously achieve safe cancer therapy and therapeutic response monitoring, an iodinated prodrug strategy was proposed. 2,3,5-Triiodobenzoic acid (TIBA) was used to modify both paclitaxel (PTX) and the polymeric vehicle, so that the encapsulation efficiency of PTX could be increased and the systemic toxicity could be reduced. As-prepared prodrug nanoparticles could accumulate passively in the tumor site and promptly release loaded drugs in response to the overexpressed GSH in cancer cells, which then caused efficient cell cycle arrest and apoptosis like that of the parent PTX. With this rational design, safe and efficient antitumor therapy and real-time computer tomography (CT) imaging could be simultaneously realized, facilitating potential CT imaging-guided therapy of metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  2. Ma, X.; Zhao, Y.; Liang, X. J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 2011, 44, 1114–1122.

    Article  CAS  PubMed  Google Scholar 

  3. Ryu, J. H.; Koo, H.; Sun, I. C.; Yuk, S. H.; Choi, K.; Kim, K.; Kwon, I. C. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv. Drug Deliv. Rev. 2012, 64, 1447–1458.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656–72.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Buriahi, M. S.; Tonguc, B. T. Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 2020, 166, 108507.

    Article  CAS  Google Scholar 

  6. Wang, M.; Chang, M.; Chen, Q.; Wang, D.; Li, C.; Hou, Z.; Lin, J.; Jin, D.; Xing, B. Au(2)Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 2020, 252, 120093.

    Article  CAS  PubMed  Google Scholar 

  7. Choi, J. Y.; Lee, J. M.; Sirlin, C. B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 2014, 273, 30–50.

    Article  PubMed  Google Scholar 

  8. Liu, Y.; Ai, K.; Lu, L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc. Chem. Res. 2012, 45, 1817–1827.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

    Article  CAS  PubMed  Google Scholar 

  10. Potier, M.; Lagroye, I.; Lakhdar, B.; Cambar, J.; Idee, J. M. Comparative cytotoxicity of low- and high-osmolar contrast media to human fibroblasts and rat mesangial cells in culture. Invest. Radiol. 1997, 32, 621–626.

    Article  CAS  PubMed  Google Scholar 

  11. Hallouard, F.; Anton, N.; Choquet, P.; Constantinesco, A.; Vandamme, T. Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomaterials 2010, 31, 6249–6268.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, W. L.; Li, N.; Huang, J.; Yu, J. H.; Wang, D. X.; Li, Y. P.; Liu, S. Y. Gadolinium-conjugated FA-PEG-PAMAM-COOH nanoparticles as potential tumor-targeted circulation-prolonged macromolecular MRI contrast agents. J. Appl. Polym. Sci. 2010, 118, 1805–1814.

    Article  CAS  Google Scholar 

  13. Yan, J.; Yin, M.; Foster, F. S.; Démoré, C. E. M. Tumor contrast imaging with gas vesicles by circumventing the reticuloendothelial system. Ultrasound Med. Biol 2020, 46, 359–368.

    Article  PubMed  Google Scholar 

  14. Rajendran, K.; Petersilka, M.; Henning, A.; Shanblatt, E. R.; Schmidt, B.; Flohr, T. G.; Ferrero, A.; Baffour, F.; Diehn, F. E.; Yu, L.; Rajiah, P.; Fletcher, J. G.; Leng, S.; McCollough, C. H. First clinical photon-counting detector CT system: technical evaluation. Radiology 2021, 303, 130–138.

    Article  PubMed  Google Scholar 

  15. Bhatt, S. P.; Soler, X.; Wang, X.; Murray, S.; Anzueto, A. R.; Beaty, T. H.; Boriek, A. M.; Casaburi, R.; Criner, G. J.; Diaz, A. A.; Dransfield, M. T.; Curran-Everett, D.; Galban, C. J.; Hoffman, E. A.; Hogg, J. C.; Kazerooni, E. A.; Kim, V.; Kinney, G. L.; Lagstein, A.; Lynch, D. A.; Make, B. J.; Martinez, F. J.; Ramsdell, J. W.; Reddy, R.; Ross, B. D.; Rossiter, H. B.; Steiner, R. M.; Strand, M. J.; van Beek, E. J.; Wan, E. S.; Washko, G. R.; Wells, J. M.; Wendt, C. H.; Wise, R. A.; Silverman, E. K.; Crapo, J. D.; Bowler, R. P.; Han, M. K.; Investigators, C. O. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016, 194, 178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smit, J.; Borm, F. J.; Niemeijer, A. N.; Huisman, M. C.; Hoekstra, O. S.; Boellaard, R.; Oprea-Lager, D. E.; Vugts, D. J.; van Dongen, G.; de Wit-van der Veen, B. J.; Thunnissen, E.; Smit, E. F.; de Langen, A. J. PD-L1 PET/CT imaging with radiolabeled durvalumab in patients with advanced-stage non-small cell lung cancer. J. Nucl. Med. 2022, 63, 686–693.

    CAS  PubMed  Google Scholar 

  17. Sartor, O.; de Bono, J.; Chi, K. N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S. T.; Nordquist, L. T.; Vaishampayan, N.; El-Haddad, G.; Park, C. H.; Beer, T. M.; Armour, A.; Perez-Contreras, W. J.; DeSilvio, M.; Kpamegan, E.; Gericke, G.; Messmann, R. A.; Morris, M. J.; Krause, B. J.; Investigators, V. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2021, 385, 1091–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Q.; Qian, Y.; Li, P.; Zhang, S.; Liu, J.; Sun, X.; Fulham, M.; Feng, D.; Huang, G.; Lu, W.; Song, S. 131I-labeled copper sulfide-loaded microspheres to treat hepatic tumors via hepatic artery embolization. Theranostics 2018, 8, 785–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu, J.; Wang, G.; Alves, C. S.; Tomás, H.; Xiong, Z.; Shen, M.; Rodrigues, J.; Shi, X. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir 2018, 34, 12428–12435.

    Article  CAS  PubMed  Google Scholar 

  20. Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; Rivière, F.; Janicot, H.; Gervais, R.; Locher, C.; Milleron, B.; Tran, Q.; Lebitasy, M. P.; Morin, F.; Creveuil, C.; Parienti, J. J.; Scherpereel, A. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414.

    Article  CAS  PubMed  Google Scholar 

  21. Danhier, F.; Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J. Controlled Release 2009, 133, 11–7.

    Article  CAS  Google Scholar 

  22. Zhao, J.; Du, J.; Wang, J.; An, N.; Zhou, K.; Hu, X.; Dong, Z.; Liu, Y. Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl. Mater. Interfaces 2021, 13, 14577–14586.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y.; Guo, K.; Ding, M.; Zhang, B.; Xiao, N.; Tang, Z.; Wang, Z.; Zhang, C.; Shubhra, Q. T. H. Engineered magnetic polymer nanoparticles can ameliorate breast cancer treatment inducing pyroptosis-starvation along with chemotherapy. ACS Appl. Mater. Interfaces 2022, 14, 42541–42557.

    Article  CAS  PubMed  Google Scholar 

  24. Das, T.; Nandy, S.; Pandey, D. K.; Al-Tawaha, A. R.; Swamy, M. K.; Kumar, V.; Nongdam, P.; Dey, A. 12-An update on paclitaxel treatment in breast cancer. Paclitaxel 2022, 287–308.

    Chapter  Google Scholar 

  25. Li, L.; Zhan, Q.; Yi, K.; Chen, N.; Li, X.; Yang, S.; Hou, X.; Zhao, J.; Yuan, X.; Kang, C. Engineering Lipusu with lysophosphatidylcholine for improved tumor cellular uptake and anticancer efficacy. J. Mater. Chem. B 2022, 10, 1833–1842.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Q.; Xu, S.; Liu, S.; Wang, Y.; Liu, G. Emerging nanomedicines of paclitaxel for cancer treatment. J. Control. Rel. 2022, 342, 280–294.

    Article  CAS  Google Scholar 

  27. Luo, C.; Sun, J.; Liu, D.; Sun, B.; Miao, L.; Musetti, S.; Li, J.; Han, X.; Du, Y.; Li, L.; Huang, L.; He, Z. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pei, Q.; Hu, X.; Zheng, X.; Liu, S.; Li, Y.; Jing, X.; Xie, Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 2018, 12, 1630–1641.

    Article  CAS  PubMed  Google Scholar 

  29. Luo, T.; Loira-Pastoriza, C.; Patil, H. P.; Ucakar, B.; Muccioli, G. G.; Bosquillon, C.; Vanbever, R. PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma. J. Control. Rel. 2016, 239, 62–71.

    Article  CAS  Google Scholar 

  30. Yang, D.; Liu, X.; Jiang, X.; Liu, Y.; Ying, W.; Wang, H.; Bai, H.; Taylor, W. D.; Wang, Y.; Clamme, J. P.; Co, E.; Chivukula, P.; Tsang, K. Y.; Jin, Y.; Yu, L. Effect of molecular weight of PGG—paclitaxel conjugates on in vitro and in vivo efficacy. J. Control. Rel. 2012, 161, 124–131.

    Article  CAS  Google Scholar 

  31. Jiang, M.; Zhang, R.; Wang, Y.; Jing, W.; Liu, Y.; Ma, Y.; Sun, B.; Wang, M.; Chen, P.; Liu, H.; He, Z. Reduction-sensitive paclitaxel prodrug self-assembled nanoparticles with tetrandrine effectively promote synergistic therapy against drug-sensitive and multidrug-resistant breast cancer. Mol. Pharmaceutics 2017, 14, 3628–3635.

    Article  CAS  Google Scholar 

  32. Zhai, Y.; Zhou, X.; Jia, L.; Ma, C.; Song, R.; Deng, Y.; Hu, X.; Sun, W. Acetal-linked paclitaxel polymeric prodrug based on functionalized mPEG-PCL diblock polymer for pH-triggered drug delivery. Polymers 2017, 9, 698.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, X.; He, F.; Xiang, K.; Zhang, J.; Xu, M.; Long, P.; Su, H.; Gan, Z.; Yu, Q. CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules 2018, 19, 883–895.

    Article  CAS  PubMed  Google Scholar 

  34. Yi, X.; Hu, J. J.; Dai, J.; Lou, X.; Zhao, Z.; Xia, F.; Tang, B. Z. Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemophotodynamic therapy. ACS Nano 2021, 15, 3026–3037.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y.; Jiang, Y.; Zheng, Z.; Du, N.; Guan, S.; Guo, W.; Tang, X.; Cui, J.; Zhang, L.; Liu, K.; Yu, Q.; Gan, Z. Co-delivery of precisely prescribed multi-prodrug combination by an engineered nanocarrier enables efficient individualized cancer chemotherapy. Adv. Mater. 2022, 34, e2110490.

    Article  PubMed  Google Scholar 

  36. Wang, Z.; Yang, C.; Zhang, H.; Gao, Y.; Xiao, M.; Wang, Z.; Yang, L.; Zhang, J.; Ren, C.; Liu, J. In situ transformable supramolecular nanomedicine targeted activating hippo pathway for triple-negative breast cancer growth and metastasis inhibition. ACS Nano 2022, 16, 14644–14657.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, C.; Meng, X.; Gong, C.; Zhao, J.; Zhang, K.; Yang, Z. Glutathione-responsive biodegradable nanoplatform with endogenous esterase-triggered nitric oxide release for gas therapy and enhanced chemotherapy. ACS Appl. Bio Mater. 2021, 4, 5212–5221.

    Article  CAS  PubMed  Google Scholar 

  38. Yu, K.; Hai, X.; Yue, S.; Song, W.; Bi, S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem. Eng. J. 2021, 419, 129535.

    Article  CAS  Google Scholar 

  39. Tan, P.; Cai, H.; Wei, Q.; Tang, X.; Zhang, Q.; Kopytynski, M.; Yang, J.; Yi, Y.; Zhang, H.; Gong, Q.; Gu, Z.; Chen, R.; Luo, K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021, 277, 121061.

    Article  CAS  PubMed  Google Scholar 

  40. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.

    Article  CAS  Google Scholar 

  41. Quan, H.; Fan, L.; Huang, Y.; Xia, X.; He, Y.; Liu, S.; Yu, J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: a potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf. B 2021, 204, 111826.

    Article  CAS  Google Scholar 

  42. Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Rel. 2011, 152, 2–12.

    Article  CAS  Google Scholar 

  43. Cuggino, J. C.; Gatti, G.; Picchio, M. L.; Maccioni, M.; Gugliotta, L. M.; Alvarez Igarzabal, C. I. Dually responsive nanogels as smart carriers for improving the therapeutic index of doxorubicin for breast cancer. Eur. Polym. J. 2019, 116, 445–452.

    Article  CAS  Google Scholar 

  44. Jin, Q.; Deng, Y.; Chen, X.; Ji, J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 2019, 13, 954–977.

    CAS  PubMed  Google Scholar 

  45. Khorsand, B.; Lapointe, G.; Brett, C.; Oh, J. K. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules 2013, 14, 2103–2111.

    Article  CAS  PubMed  Google Scholar 

  46. Borkowska, M.; Siek, M.; Kolygina, D. V.; Sobolev, Y. I.; Lach, S.; Kumar, S.; Cho, Y. K.; Kandere-Grzybowska, K.; Grzybowski, B. A. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol. 2020, 15, 331–341.

    Article  CAS  PubMed  Google Scholar 

  47. Qian, J.; Xu, Z.; Meng, C.; Liu, Y.; Wu, H.; Wang, Y.; Yang, J.; Zheng, H.; Ran, F.; Liu, G. Q.; Ling, Y. Redox-activatable theranostic co-prodrug for precise tumor diagnosis and selective combination chemotherapy. J. Med. Chem. 2022, 65, 10393–10407.

    Article  CAS  PubMed  Google Scholar 

  48. Angelucci, A.; Mari, M.; Millimaggi, D.; Giusti, I.; Carta, G.; Bologna, M.; Dolo, V. Suberoylanilide hydroxamic acid partly reverses resistance to paclitaxel in human ovarian cancer cell lines. Gynecol. Oncol. 2010, 119, 557–563.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, G.; Zong, W.; Guo, H.; Li, F.; Zhang, X.; Yu, P.; Ren, F.; Zhang, X.; Shi, X.; Gao, F.; Chang, J.; Wang, S. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination. Adv. Mater. 2021, 33, 2100398.

    Article  CAS  Google Scholar 

  50. Kelkar, S. S.; Hill, T. K.; Marini, F. C.; Mohs, A. M. Near infrared fluorescent nanoparticles based on hyaluronic acid: self-assembly, optical properties, and cell interaction. Acta Biomater. 2016, 36, 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ginn-Hedman, A. M.; Self, T. S.; Jessen, S. L.; Heaps, C. L.; Weeks, B. R.; Clubb, F. J. Jr. Diffusible contrast-enhanced micro-CT improves visualization of stented vessels. Cardiovasc. Pathol. 2022, 60, 107428.

    Article  PubMed  Google Scholar 

  52. Louage, B.; Van Steenbergen, M. J.; Nuhn, L.; Risseeuw, M. D. P.; Karalic, I.; Winne, J.; Van Calenbergh, S.; Hennink, W. E.; De Geest, B. G. Micellar paclitaxel-initiated RAFT polymer conjugates with acid-sensitive behavior. ACS Macro Lett. 2017, 6, 272–276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973014, 52033001 and 21774008) and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC for BUCT and the Fundamental Research Funds for the Central Universities of China (Nos. BUCTRC201912, XK1701 and XK1802-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Song Yu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JW., Shen, Y., Yu, QS. et al. Paclitaxel Prodrug Nanomedicine for Potential CT-imaging Guided Breast Cancer Therapy. Chin J Polym Sci 41, 1747–1759 (2023). https://doi.org/10.1007/s10118-023-2958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2958-7

Keywords

Navigation