Skip to main content
Log in

A Perspective on the Dynamics Properties in Polymer Nanocomposites

  • Perspective
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer nanocomposites (PNCs) usually have superior properties than pristine polymers. Understanding the dynamics properties in PNC system is crucial to reveal the mechanism of property change unpon the addition of nanoparticles (NPs), and therefore for a better design of the material properties. In this short perspective, we summarize recent advances mainly from theoretical and simulation studies of dynamics properties in polymer nanocomposite system. One is the “vehicle model” which reveals that diffusion dynamics of sticky NP is coupled to surrounding chain segments. Similarly, recent simulations demonstrate that such coupling also exists in all-polymer nanocomposite wich is composed of linear polymer chains and single-chain nanoparticles (SCNPs). These SCNPs have almost the same chemical composition as the matrix chain. Therefore, it is assumed that such all-polymer nanocomposite can act as a model system where there are no enthalpic interactions between NPs and polymer chains. Although the above dynamic coupling was found in the above two different systems containing inorganic NPs or relatively small organic SCNPs, it was found that the length scale of such dynamic coupling (the thickness of the matrix/NP interface) is comparable to the NP size, which is surprisingly consistent in the above two different systems. In addition, a chain-length dependence of the NP influence on the chain dynamics reported from a recent joint simulaiton and experimental study of all-polymer nanocomposite system, and a theoretical model developed for such phenomena are also reviewed. At the end, we give an outlook of this field, especially for possible chain-length dependence of complex dynamics in sticky-NP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S.; Meng Lin, M.; Toprak, M. S.; Kim, D. K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010, 1, 5214.

    Article  Google Scholar 

  2. Cong, H.; Radosz, M.; Towler, B. F.; Shen, Y. Polymer-inorganic nanocomposite membranes for gas separation. Sep. Purific. Technol. 2007, 55, 281–291.

    Article  CAS  Google Scholar 

  3. Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317.

    Article  PubMed  Google Scholar 

  4. Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12, 914–928.

    Article  CAS  Google Scholar 

  5. Anderson, B. J.; Zukoski, C. F. Rheology and microstructure of an unentangled polymer nanocomposite melt. Macromolecules 2008, 41, 9326–9334.

    Article  CAS  Google Scholar 

  6. Nguyen, C.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Mintsa, H. A. Viscosity data for Al2O3-water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Thermal Sci. 2008, 47, 103–111.

    Article  CAS  Google Scholar 

  7. Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Sci. 2009, 33, 706–714.

    Article  CAS  Google Scholar 

  8. Einstein, A., et al. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der physik 1905, 17, 208.

    Google Scholar 

  9. Batchelor, G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mechanics 1977, 83, 97–117.

    Article  Google Scholar 

  10. Guzeyev, V.; Rafikov, M.; Malinskii, Y. M. The effect of filler dispersity of the melt viscosity of polyvinyl chloride (PVC). Polym. Sci. USSR 1975, 17, 923–926.

    Article  Google Scholar 

  11. Tuteja, A.; Duxbury, P. M.; Mackay, M. E. Multifunctional nanocomposites with reduced viscosity. Macromolecules 2007, 40, 9427–9434.

    Article  CAS  Google Scholar 

  12. Tan, H.; Lin, Y.; Zheng, J.; Gong, J.; Qiu, J.; Xing, H.; Tang, T. Particle-size dependent melt viscosity behavior and the properties of three-arm star polystyrene-Fe3O4 composites. Soft Matter 2015, 11, 3986–3993.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt, R. G.; Gordon, G. V.; Dreiss, C. A.; Cosgrove, T.; Krukonis, V. J.; Williams, K.; Wetmore, P. M. A critical size ratio for viscosity reduction in poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 2010, 43, 10143–10151.

    Article  CAS  Google Scholar 

  14. Tan, H.; Xu, D.; Wan, D.; Wang, Y.; Wang, L.; Zheng, J.; Liu, F.; Ma, L.; Tang, T. Melt viscosity behavior of C60 containing star polystyrene composites. Soft Matter 2013, 9, 6282–6290.

    Article  CAS  Google Scholar 

  15. Mangal, R.; Srivastava, S.; Archer, L. A. Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat. Commun. 2015, 6, 1–9.

    Article  Google Scholar 

  16. Kim, D.; Srivastava, S.; Narayanan, S.; Archer, L. A. Polymer nanocomposites: polymer and particle dynamics. Soft Matter 2012, 8, 10813–10818.

    Article  CAS  Google Scholar 

  17. Goldansaz, H.; Goharpey, F.; Afshar-Taromi, F.; Kim, I.; Stadler, F. J.; Van Ruymbeke, E.; Karimkhani, V. Anomalous rheological behavior of dendritic nanoparticle/linear polymer nanocomposites. Macromolecules 2015, 48, 3368–3375.

    Article  CAS  Google Scholar 

  18. Jancar, J.; Douglas, J.; Starr, F. W.; Kumar, S.; Cassagnau, P.; Lesser, A.; Sternstein, S. S.; Buehler, M. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343.

    Article  CAS  Google Scholar 

  19. Gong, S.; Chen, Q.; Moll, J. F.; Kumar, S. K.; Colby, R. H. Segmental dynamics of polymer melts with spherical nanoparticles. ACS Macro Lett. 2014, 3, 773–777.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, S.; Carroll, B.; Lu, W.; Fan, F.; Carrillo, J. M. Y.; Martin, H.; Holt, A. P.; Kang, N.-G.; Bocharova, V.; Mays, J. W.; Sumpter, B. G.; Dadmum, M.; Sokolov, A. P. Interfacial properties of polymer nanocomposites: role of chain rigidity and dynamic heterogeneity length scale. Macromolecules 2017, 50, 2397–2406.

    Article  CAS  Google Scholar 

  21. Jimenez, A. M.; Zhao, D.; Misquitta, K.; Jestin, J.; Kumar, S. K. Exchange lifetimes of the bound polymer layer on silica nanoparticles. ACS Macro Lett. 2019, 8, 166–171.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, S.; Bocharova, V.; Belianinov, A.; Xiong, S.; Kisliuk, A.; Somnath, S.; Holt, A. P.; Ovchinnikova, O. S.; Jesse, S.; Martin, H., et al. Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett. 2016, 16, 3630–3637.

    Article  CAS  PubMed  Google Scholar 

  23. Carroll, B.; Cheng, S.; Sokolov, A. P. Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy. Macromolecules 2017, 50, 6149–6163.

    Article  CAS  Google Scholar 

  24. Yamamoto, U.; Carrillo, J. M. Y.; Bocharova, V.; Sokolov, A. P.; Sumpter, B. G.; Schweizer, K. S. Theory and simulation of attractive nanoparticle transport in polymer melts. Macromolecules 2018, 51, 2258–2267.

    Article  CAS  Google Scholar 

  25. Carroll, B.; Bocharova, V.; Carrillo, J. M. Y.; Kisliuk, A.; Cheng, S.; Yamamoto, U.; Schweizer, K. S.; Sumpter, B. G.; Sokolov, A. P. Diffusion of sticky nanoparticles in a polymer melt: crossover from suppressed to enhanced transport. Macromolecules 2018, 51, 2268–2275.

    Article  CAS  Google Scholar 

  26. Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; Kim, H. C.; Hawker, C. J. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762–766.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, T.; Qian, H. J.; Zhu, Y. L.; Lu, Z. Y. Structure and dynamics properties at interphase region in the composite of polystyrene and cross-linked polystyrene soft nanoparticle. Macromolecules 2015, 48, 2751–2760.

    Article  CAS  Google Scholar 

  28. Qian, H. J.; Carbone, P.; Chen, X.; Karimi-Varzaneh, H. A.; Liew, C. C.; MüllerPlathe, F. Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures. Macromolecules 2008, 41, 9919–9929.

    Article  CAS  Google Scholar 

  29. Jia, X. M. Molecular dynamics simulation study on interface properties of polymer nanocomposites. Ph.D. thesis, Jilin University, 2021.

  30. Chen, T.; Qian, H. J.; Lu, Z. Y. Diffusion dynamics of nanoparticle and its coupling with polymers in polymer nanocomposites. Chem. Phys. Lett. 2017, 687, 96–100.

    Article  CAS  Google Scholar 

  31. Chen, T.; Qian, H. J.; Lu, Z. Y. Note: Chain length dependent nanoparticle diffusion in polymer melt: effect of nanoparticle softness. J. Chem. Phys. 2016, 145, 106101.

    Article  PubMed  Google Scholar 

  32. Chen, T.; Zhao, H. Y.; Shi, R.; Lin, W. F.; Jia, X. M.; Qian, H. J.; Lu, Z. Y.; Zhang, X. X.; Li, Y. K.; Sun, Z. Y. An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite. Nat. Commun. 2019, 10, 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873040, 22133002 and 21833008). H.J.Q. and Z.Y.L. also acknowledge the support from the Program for JLU Science and Technology Innovative Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-Jun Qian.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XZ., Lu, ZY. & Qian, HJ. A Perspective on the Dynamics Properties in Polymer Nanocomposites. Chin J Polym Sci 41, 1355–1360 (2023). https://doi.org/10.1007/s10118-023-2956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2956-9

Keywords

Navigation