Skip to main content
Log in

Low Dielectric Benzocyclobutene-type Polymers Based on Facile Synthesis of Linear Fluorinated Monomer

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A linear fluorinated benzocyclobutene-type monomer (4F-bis-BCB) was facilely synthesized by a one-step copper-catalyzed etherification reaction and a simple precipitation post-purification method. Moreover, a series of BCB-based polymeric low-dielectric (low-k) materials were obtained by the thermal-induced ring-opening copolymerization of 4F-bis-BCB with divinyl tetramethyl disiloxane-bisbenzocyclobutene (DVS-BCB) monomer and further simple thermal curing at high temperature (200–300 °C). The resultant fully cured materials demonstrated excellent low dielectric properties at high frequency of 10 GHz (dielectric constant (Dk)<2.6, dielectric loss (Df)<1.57×10−2), great hydrophobicity (water contact angle >116°), ultra-low water absorption (<0.19% after soaked in water at room temperature for 60 h) and excellent planarization ability (surface roughness<0.56 nm of 3 µm-thick film). Overall, this new fluorinated BCB-type monomer provides us an alternative for the facile preparation of low-k polymeric materials and exhibits great potential for future applications in high-frequency communication and three-dimensional high-density packaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markoski, L. J.; Walker, K. A.; Deeter, G. A.; Spilman, G. E.; Martin, D. C.; Moore, J. S. Cross-linkable copolymers of poly(p-phenyleneterephthalamide). Chem. Mater. 1993, 5, 248–250.

    Article  CAS  Google Scholar 

  2. Walker, K. A.; Markoski, L. J.; Deeter, G. A.; Spilman, G. E.; Martin, D. C.; Moore, J. S. Crosslinking chemistry for high-performance polymer networks. Polymer 1994, 35, 5012–5017.

    Article  CAS  Google Scholar 

  3. Chapman, O. L.; Tsou, U. P. E.; Johnson, J. W. Thermal isomerization of benzocyclobutene. J. Am. Chem. Soc. 2002, 109, 553–559.

    Article  Google Scholar 

  4. Tan, L.-S.; Arnold, F. E. Benzocyclobutene in polymer synthesis. I. Homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 1819–1834.

    Article  CAS  Google Scholar 

  5. Kirchhoff, R. A.; Bruza, K. J. Benzocyclobutenes in polymer synthesis. Prog. Polym. Sci. 1993, 18, 85–185.

    Article  CAS  Google Scholar 

  6. Mills, M. E.; Townsend, P.; Castillo, D.; Martin, S.; Achen, A. Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material. Microelectron. Eng. 1997, 33, 327–334.

    Article  CAS  Google Scholar 

  7. Lee, K.; He, J.; Clement, R.; Massia, S.; Kim, B. Biocompatible benzocyclobutene (BCB)-based neural implants with microfluidic channel. Biosens. Bioelectron. 2004, 20, 404–407.

    Article  CAS  PubMed  Google Scholar 

  8. Tételin, A.; Pellet, C.; Laville, C.; N’Kaoua, G. Fast response humidity sensors for a medical microsystem. Sens. Actuators, B 2003, 91, 211–218.

    Article  Google Scholar 

  9. Chua, L.-L.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors. Appl. Phys. Lett. 2004, 84, 3400–3402.

    Article  CAS  Google Scholar 

  10. Wu, Q.; Lorenz, N.; Hand, D. P. Localised laser joining of glass to silicon with BCB intermediate layer. Microsyst. Technol. 2009, 15, 1051–1057.

    Article  CAS  Google Scholar 

  11. Young-tack, H.; Kim, Y. I.; Lee, M.; Sunhee, P.; Dongha, S.; Park, C. M.; Hong, B.; Roh, Y.; Hae Jung, S.; Song, I. Post-etch residue removal in BCB/Cu interconnection structure. Thin Solid Films 2003, 435, 238–241.

    Article  Google Scholar 

  12. Krishnamurthy, V. B.; Cole, H. S.; Sitnik-Nieters, T. Use of BCB in high frequency MCM interconnects. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B 1996, 19, 42–47.

    Article  CAS  Google Scholar 

  13. Wolff, S.; Giehl, A. R.; Renno, M.; Fouckhardt, H. Metallic waveguide mirrors in polymer film waveguides. Appl. Phys. B 2014, 73, 623–627.

    Article  Google Scholar 

  14. Chen, Y.; Feng, J. B.; Zhou, Z. P.; Yu, J.; Summers, C. J.; Citrin, D. S. Fabrication of silicon microring resonator with smooth sidewalls. J. Micro-Nanolithography Mems. Moems. 2009, 8, 043060.

    Article  Google Scholar 

  15. Keyvaninia, S.; Muneeb, M.; Stanković, S.; Van Veldhoven, P. J.; Van Thourhout, D.; Roelkens, G. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express 2012, 3, 35–46.

    Article  Google Scholar 

  16. Zhang, J.; Haq, B.; O’Callaghan, J.; Gocalinska, A.; Pelucchi, E.; Trindade, A. J.; Corbett, B.; Morthier, G.; Roelkens, G. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Expr. 2018, 26, 8821–8830.

    Article  CAS  Google Scholar 

  17. Lee, K.; Massia, S.; He, J. Biocompatible benzocyclobutene-based intracortical neural implant with surface modification. J. Micromech. Microeng. 2005, 15, 2149–2155.

    Article  CAS  Google Scholar 

  18. Zhu, H.; He, J.; Kim, B. High-yield benzocyclobutene(BCB) based neural implants for simultaneous intra- and extracortical recording in rats. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 2004, 4341–4344.

    PubMed  Google Scholar 

  19. Perettie, D. J.; M. F. M., Phil E. Garrou Benzocyclobutene as a planarization resin for flat panel displays. Liq. Cryst. Mater. Devic. Appl. 1992, 1665, 331–337.

    Article  CAS  Google Scholar 

  20. Bastug, E.; Bennis, M.; Medard, M.; Debbah, M. Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun. Mag. 2017, 55, 110–117.

    Article  Google Scholar 

  21. Fu, F.; Shen, M.; Wang, D.; Liu, H.; Shang, S.; Hu, F. L.; Song, Z.; Song, J. Facile strategy for preparing a rosin-based low-k material: molecular design of free volume. Biomacromolecules 2022, 23, 2856–2866.

    Article  CAS  PubMed  Google Scholar 

  22. Kong, L.; Cheng, Y.; Jin, Y.; Ren, Z.; Li, Y.; Xiao, F. Adamantyl-based benzocyclobutene low-k polymers with good physical properties and excellent planarity. J. Mater. Chem. C 2015, 3, 3364–3370.

    Article  CAS  Google Scholar 

  23. Zhou, D. L.; Li, J. H.; Guo, Q. Y.; Lin, X.; Zhang, Q.; Chen, F.; Han, D.; Fu, Q. Polyhedral oligomeric silsesquioxanes based ultralow-k materials: the effect of cage size. Adv. Funct. Mater. 2021, 31, 2102074.

    Article  CAS  Google Scholar 

  24. Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594.

    Article  CAS  Google Scholar 

  25. Wei, J. J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.

    Article  CAS  Google Scholar 

  26. Rajesh, S.; Nisa, V. S.; Murali, K. P.; Ratheesh, R. Microwave dielectric properties of PTFE/rutile nanocomposites. J. Alloys Compd. 2009, 477, 677–682.

    Article  CAS  Google Scholar 

  27. He, F.; Jin, K.; Wang, J.; Luo, Y.; Sun, J.; Fang, Q. New fluoropolymers having both low water uptake and a low dielectric constant. Macromol. Chem. Phys. 2015, 216, 2302–2308.

    Article  CAS  Google Scholar 

  28. He, F. K.; Yuan, C.; Li, K.; Diao, S.; Jin, K. K.; Wang, J. J.; Tong, J. W.; Ma, J.; Fang, Q. A new low dielectric material with high thermostability based on a thermosetting trifluoromethyl substituted aromatic molecule. RSC Adv. 2013, 3, 23128–23132.

    Article  CAS  Google Scholar 

  29. Ullmann, F. Ueber symmetrische Biphenylderivate. Justus Liebig’s Annalen der Chemie 1904, 332, 38–81.

    Article  Google Scholar 

  30. Niu, J.; Guo, P.; Kang, J.; Li, Z.; Xu, J.; Hu, S. Copper(I)-catalyzed aryl bromides to form intermolecular and intramolecular carbon-oxygen bonds. J. Org. Chem. 2009, 74, 5075–5078.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, J.; Wang, J.; Zhao, J.; Jin, K.; Sun, J.; Guo, X.; Fang, Q. A newfluoropolymer having triazine rings as a dielectric material: synthesis and properties. Polym. Chem. 2017, 8, 6173–6180.

    Article  CAS  Google Scholar 

  32. Tian, S.; Sun, J.; Jin, K.; Wang, J.; He, F.; Zheng, S.; Fang, Q. Postpolymerization of a fluorinated and reactive poly(aryl ether): an efficient way to balance the solubility and solvent resistance of the polymer. ACS Appl. Mater. Interfaces 2014, 6, 20437–20443.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, P.; Yang, H.; He, P. The speciality and meaning of interactions between macromolecules. Polym. Bull. 2002, 5, 73–78.

    Google Scholar 

  34. Cheng, Y.; Tian, S.; Shi, Y.; Chen, W.; Li, Z.; Zhu, T.; Zhang, Z. Benzocyclobutene organosiloxane resins prepared by alcoholysis of BCB functionalized chlorosilane for highly crosslinked low-k thermosets. Eur. Polym. J. 2017, 95, 440–447.

    Article  CAS  Google Scholar 

  35. Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65.

    Article  CAS  Google Scholar 

  36. Farona, M. F. Benzocyclobutenes in polymer chemistry. Prog. Polym. Sci. 1996, 21, 505–555.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22075298) and the Beijing Municipal Natural Science Foundation (No. 2212053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xin Fu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Yuan, ZW., Fan, WJ. et al. Low Dielectric Benzocyclobutene-type Polymers Based on Facile Synthesis of Linear Fluorinated Monomer. Chin J Polym Sci 41, 1760–1766 (2023). https://doi.org/10.1007/s10118-023-2955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2955-x

Keywords

Navigation