Skip to main content
Log in

Long-Range Ordered Nanostructures of Assembling Macromolecules via Rational Design of Kinetic Pathways: A Computational Perspective

  • Perspective
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Designing the kinetic pathways of assembling macromolecules such as block copolymers and DNA strands is crucial not only for an achievement of thermodynamically equilibrium nanostructures over macroscopic areas, but also for a better understanding of formation process of higher-level superstructures where well-tailored assemblies act as mesoscopic building units. Theoretical analysis and computer simulations provide excellent opportunities to microscopically reveal the kinetics and mechanism of structural evolution as well as the collective behaviors of building units. In this perspective, we summarize our efforts of theoretical and computational modelling to understand the long-range ordering mechanisms and the organization kinetics of assembling macromolecules along designable pathways. First, we present the computational modelling and recent strategies of designable pathways for the achievement of long-range ordering. Then, from the computational views, we give the applications of pathway-designed strategies to explore the ordering mechanism and kinetics in the course of structural evolution, covering the block copolymers and their nanocomposites under zone annealing as well as the hierarchical self-assembly of mesoscopic building units (e.g., patchy micelles and DNA-functionalized nanoparticles). Finally, we outlook future directions in the field of designable pathways for the achievement of long-range ordered nanostructures. This perspective could promote further efforts towards the wide applications of theoretical and computational modelling in the construction of soft hybrid metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, C. H.; Zhu, Y. Y.; Man, X. K. Block copolymer thin films. Phys. Rep. 2021, 932, 1–36.

    CAS  Google Scholar 

  2. Laramy, C. R.; O’Brien, M. N.; Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 2019, 4, 201–224.

    CAS  Google Scholar 

  3. Rogers, W. B.; Shih, W. M.; Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 2016, 1, 16008.

    CAS  Google Scholar 

  4. Cademartiri, L.; Bishop, K. J. M. Programmable self-assembly. Nat. Mater. 2015, 14, 2–9.

    CAS  PubMed  Google Scholar 

  5. Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

    CAS  PubMed  Google Scholar 

  6. Müller, M.; de Pablo, J. J. Computational approaches for the dynamics of structure formation in self-assembling polymeric materials. Annu. Rev. Mater. Res. 2013, 43, 1–34.

    Google Scholar 

  7. Müller, M.; Abetz, V. Nonequilibrium processes in polymer membrane formation: theory and experiment. Chem. Rev. 2021, 121, 14189–14231.

    PubMed  Google Scholar 

  8. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47, 2–12.

    CAS  Google Scholar 

  9. Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M. A. Solvent vapor annealing of block polymer thin films. Macromolecules 2013, 46, 5399–5415.

    CAS  Google Scholar 

  10. Li, W.; Duan, C.; Shi, A. C. Nonclassical spherical packing phases self-assembled from AB-type block copolymers. ACS Macro Lett. 2017, 6, 1257–1262.

    CAS  PubMed  Google Scholar 

  11. Zhu, G.; Huang, Z.; Xu, Z.; Yan, L. T. Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 2018, 51, 900–909.

    CAS  PubMed  Google Scholar 

  12. Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140.

    CAS  PubMed  Google Scholar 

  13. Glaser, J.; Nguyen, T. D.; Anderson, J. A.; Lui, P.; Spiga, F.; Millan, J. A.; Morse, D. C.; Glotzer, S. C. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 2015, 192, 97–107.

    CAS  Google Scholar 

  14. Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013, 34, 2197–2211.

    CAS  PubMed  Google Scholar 

  15. Allen, M. P.; Tildesley D. J. Computer Simulation of Liquid. Oxford University Press: New York, 1989.

    Google Scholar 

  16. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992, 19, 155–160.

    Google Scholar 

  17. Fredrickson, G. H. The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press: Oxford, 2006.

    Google Scholar 

  18. Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffmann, C.; Altevogt, P.; Goldbeck-Wood, G. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 1997, 106, 4260–4269.

    CAS  Google Scholar 

  19. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition. Macromolecules 1999, 32, 952–954.

    CAS  Google Scholar 

  20. Berry, B. C.; Bosse, A. W.; Douglas, J. F.; Jones, R. L.; Karim, A. Orientational order in block copolymer films zone annealed below the order-disorder transition temperature. Nano Lett. 2007, 7, 2789–2794.

    CAS  PubMed  Google Scholar 

  21. Liu, F.; Goldenfeld, N. Dynamics of phase separation in block copolymer melts. Phys. Rev. A: At., Mol., Opt. Phys. 1989, 39, 4805–4910.

    CAS  Google Scholar 

  22. Paquette, G. C. Front propagation in a diblock copolymer Melt. Phys. Rev. A: At., Mol., Opt. Phys. 1991, 44, 6577–6599.

    CAS  Google Scholar 

  23. Furukawa, H. Phase separation by directional quenching and morphological transition. Phys. A 1992, 180, 128–155.

    CAS  Google Scholar 

  24. Zhang, H.; Zhang, J.; Yang, Y.; Zhou, X. Microphase separation of diblock copolymer induced by directional quenching. J. Chem. Phys. 1997, 106, 784–792.

    CAS  Google Scholar 

  25. Bosse, A. W.; Douglas, J. F.; Berry, B. C.; Jones, R. L.; Karim, A. Blockcopolymer ordering with a spatiotemporally heterogeneous mobility. Phys. Rev. Lett. 2007, 99, 216101.

    PubMed  Google Scholar 

  26. Cong, Z.; Zhang, L.; Wang, L.; Lin, J. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing. J. Chem. Phys. 2016, 144, 114901.

    PubMed  Google Scholar 

  27. Wan, X.; Gao, T.; Zhang, L.; Lin, J. Ordering kinetics of lamella-forming block copolymers under the guidance of various external fields studied by dynamic self-consistent field theory. Phys. Chem. Chem. Phys. 2017, 19, 6707–6720.

    CAS  PubMed  Google Scholar 

  28. Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. E. Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 2012, 3, 710.

    PubMed  Google Scholar 

  29. Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. E. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247–251.

    PubMed  Google Scholar 

  30. Ma, X.; Zhou, Y.; Zhang, L.; Lin, J.; Tian, X. Polymerization-like kinetics of the self-assembly of colloidal nanoparticles into supracolloidal polymers. Nanoscale 2018, 10, 16873–16880.

    CAS  PubMed  Google Scholar 

  31. Zhang, L.; Liu, L.; Lin, J. Well-ordered self-assembled nanostructures of block copolymer films via synergistic integration of chemoepitaxy and zone annealing. Phys. Chem. Chem. Phys. 2018, 20, 498–508.

    CAS  Google Scholar 

  32. Yong, D.; Jin, H. M.; Kim, S. O.; Kim, J. U. Laser-directed self-assembly of highly aligned lamellar and cylindrical block copolymer nanostructures: experiment and simulation. Macromolecules 2018, 51, 1418–1426.

    CAS  Google Scholar 

  33. Sides, S. W.; Kim, B. J.; Kramer, E. J.; Fredrickson, G. H. Hybrid particle-field simulations of polymer nanocomposites. Phys. Rev. Lett. 2006, 96, 250601.

    PubMed  Google Scholar 

  34. Gu, J.; Zhang, R.; Zhang, L.; Lin, J. Epitaxial assembly of nanoparticles in diblock copolymer matrix: precise organization of individual nanoparticles into regular arrays. Macromolecules 2021, 54, 2561–2573.

    CAS  Google Scholar 

  35. Gu, J.; Zhang, R.; Zhang, L.; Lin, J. Harnessing zone annealing to program directional motion of nanoparticles in diblock copolymers: creating periodically well-ordered nanocomposites. Macromolecules 2020, 53, 2111–2122.

    CAS  Google Scholar 

  36. Ma, X.; Gu, M.; Zhang, L.; Lin, J.; Tian, X. Sequence-regulated supracolloidal copolymers via copolymerization-like coassembly of binary mixtures of patchy nanoparticles. ACS Nano 2019, 13, 1968–1976.

    CAS  PubMed  Google Scholar 

  37. Yang, C.; Ma, X.; Lin, J.; Wang, L.; Lu, Y.; Cai, C.; Zhang, L.; Gao, L. Supramolecular “step polymerization” of preassembled micelles: a study of “polymerization” kinetics. Macromol. Rapid Commun. 2018, 39, 1700701.

    Google Scholar 

  38. Lu, Y.; Gao, L.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Supramolecular step-growth polymerization kinetics of pre-assembled triblock copolymer micelles. Polym. Chem. 2019, 10, 3461–3468.

    CAS  Google Scholar 

  39. McMillan, J. R.; Mirkin, C. A. DNA-functionalized, bivalent proteins. J. Am. Chem. Soc. 2018, 140, 6776–6779.

    CAS  PubMed  Google Scholar 

  40. Knorowski, C.; Burleigh, S.; Travesset, A. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys. Rev. Lett. 2011, 106, 215501.

    CAS  PubMed  Google Scholar 

  41. Gu, M.; Ma, X.; Zhang, L.; Lin, J. Reversible polymerization-like kinetics for programmable self-assembly of DNA-encoded nanoparticles with limited valence. J. Am. Chem. Soc. 2019, 141, 16408–16415.

    CAS  PubMed  Google Scholar 

  42. Cai, T.; Zhao, S.; Lin, J.; Zhang, L. Kinetically programming copolymerization-like coassembly of multicomponent nanoparticles with DNA. ACS Nano 2022, 16, 15907–15916.

    CAS  PubMed  Google Scholar 

  43. Zhang, R.; Zhang, L.; Lin, J.; Lin, S. Customizing topographical templates for aperiodic nanostructures of block copolymers via inverse design. Phys. Chem. Chem. Phys. 2019, 21, 7781–7788.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22073028 and 21873029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Shun Zhang.

Ethics declarations

The authors declare no interest conflict.

Additional information

Biography

Liang-Shun Zhang received his Ph.D. degree from East China University of Science and Technology (ECUST) in 2009 under the supervision of Prof. Jiaping Lin. He moved to Johannes Gutenberg Universität Mainz, Germany as a postdoctoral fellow in Prof. Friederike Schmid’s group until 2011. He went back to ECUST as an associate professor and was promoted as a professor in 2020. His current research interests involve the self-assembly/organization processes of soft matters with the help of theoretical modeling and computer simulations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LS. Long-Range Ordered Nanostructures of Assembling Macromolecules via Rational Design of Kinetic Pathways: A Computational Perspective. Chin J Polym Sci 41, 1318–1328 (2023). https://doi.org/10.1007/s10118-023-2942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2942-2

Keywords

Navigation