Skip to main content

Advertisement

Log in

Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Shape control of mesoporous carbon microparticles (MCMPs) is of critical importance; in particular, asymmetric shapes that can yield unique properties have attracted significant attention. However, the tailored synthesis of asymmetric MCMPs with ordered structures remains challenging. Herein, we report a facile route to prepare asymmetric MCMPs by neutral interface-guided 3D-confined self-assembly (3D-CSA) of block copolymer/homopolymer (BCP/hP) blends, followed by a self-templated selective direct carbonization strategy. BCP/hP Janus microparticles with ordered hierarchical mesostructures were prepared with emulsion solvent evaporation-induced 3D-CSA. The continuous phase of BCP domains was then crosslinked. Composite asymmetric MCMPs are successfully generated after selective carbonization of the crosslinked continuous phase. This method allows tuning the shape of MCMPs easily by varying the blending ratio of BCP/hP. The composite asymmetric MCMPs combine the advantages of asymmetric shape, ordered structure, high specific surface area, chemical inertness and thermal stability and could provide great possibilities for applications in catalysis, drug delivery, energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, J.; Qiao, S.Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 2011, 50, 5947–5951.

    Article  CAS  Google Scholar 

  3. Liu, C.; Yu, M. H.; Li, Y.; Li, J. S.; Wang, J.; Yu, C. Z.; Wang, L. J. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes. Nanoscale 2015, 7, 11580–11590.

    Article  CAS  PubMed  Google Scholar 

  4. Pan, P.; Zhang, T.; Yue, Q.; Elzatahry, A. A.; Alghamdi, A.; Cheng, X. W.; Deng, Y. H. Interface coassembly and polymerization on magnetic colloids: toward core-shell functional mesoporous polymer microspheres and their carbon derivatives. Adv. Sci. 2020, 7, 2000443.

    Article  CAS  Google Scholar 

  5. Wang, C. W.; Wang, Y.; Graser, J.; Zhao, R.; Gao, F.; O’Connell, M. J. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis. ACS Nano 2013, 7, 11156–11165.

    Article  CAS  PubMed  Google Scholar 

  6. Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A.M.; Zi, J.; Zhang, F.; Zhao, D. Y. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. 2014, 53, 5366–5370.

    Article  CAS  Google Scholar 

  8. Zhang, L. H.; He, B.; Li, W.C.; Lu, A.H. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.

    Article  Google Scholar 

  9. Tang, J.; Wang, J.; Shrestha, L. K.; Hossain, M. S. A.; Alothman, Z. A.; Yamauchi, Y.; Ariga, K. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS Appl. Mater. Interfaces 2017, 9, 18986–18993.

    Article  CAS  PubMed  Google Scholar 

  10. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K.T.; Bein, T.; Nazar, L.F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2012, 51, 3591–3595.

    Article  CAS  Google Scholar 

  11. Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 2010, 49, 7987–7991.

    Article  CAS  Google Scholar 

  12. Liang, J.; Kou, H.; Ding, S. J. Complex hollow bowl-like nanostructures: synthesis, application, and perspective. Adv. Funct. Mater. 2021, 31, 2007801.

    Article  CAS  Google Scholar 

  13. Ku, K. H.; Lee, Y. J.; Kim, Y. J.; Kim, B. J. Shape-anisotropic diblock copolymer particles from evaporative emulsions: experiment and theory. Macromolecules 2019, 52, 1150–1157.

    Article  CAS  Google Scholar 

  14. Kim, S. S.; Hwang, J. K.; Lee, J. S.; Lee, J. W. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv. 2020, 6, eabb3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng, L.; Hung, C.-T.; Wang, Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y.; Wang, Z. R.; Teng, W.; Zhu, H. W.; Wang, J. X.; Elzatahry, A. A.; Al-Dahyan, D.; Li, W.; Deng, Y. H.; Zhao, D. Y. A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. J. Mater. Chem. A 2018, 6, 3162–3170.

    Article  CAS  Google Scholar 

  17. Jiang, S. Q.; Li, C.; Zhang, J. C.; Li, Q.; Xu, H. S., Xu, F. G.; Mai, Y. Y. Block copolymer self-assembly guided synthesis of mesoporous carbons with in-plane holey pores for efficient oxygen reduction reaction. Macromol. Rapid Commun. 2022, 43, 2100884.

    Article  CAS  Google Scholar 

  18. Hou, D.; Zhang, J. C.; Tian, H.; Li, Q.; Li, C.; Mai, Y. Y. Pore engineering of 2D mesoporous nitrogen-doped carbon on graphene through block copolymer self-assembly. Adv. Mater. Interfaces 2019, 6, 1901476.

    Article  CAS  Google Scholar 

  19. Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736.

    Article  CAS  PubMed  Google Scholar 

  20. He, T. X.; Wang, W. B.; Wang, J.; Chen, B. S.; Liang, Q. L. Mesoporous carbon spheres: synthesis and applications in drug delivery system. Prog. Chem. 2020, 32, 309–319.

    CAS  Google Scholar 

  21. Xu, M.; Yu, Q.; Liu, Z. H.; Lv, J. S.; Lian, S. T.; Hu, B.; Mai L. Q.; Zhou, L. Tailoring porous carbon spheres for supercapacitors. Nanoscale 2018, 10, 21604–21616.

    Article  CAS  PubMed  Google Scholar 

  22. Tian, H.; Liang, J.; Liu, J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 2019, 31, 1903886.

    Article  CAS  Google Scholar 

  23. Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311.

    Article  CAS  PubMed  Google Scholar 

  24. Fang, Y.; Lv, Y. Y.; Gong, F.; Wu, Z. X.; Li, X. M.; Zhu, H. W.; Zhou, L.; Yao, C.; Zhang, F.; Zheng, G. F.; Zhao, D. Y. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. J. Am. Chem. Soc. 2015, 137, 2808–2811.

    Article  CAS  PubMed  Google Scholar 

  25. Deng, R. H.; Liang, F. X.; Zhou, P.; Zhang, C. L.; Qu, X. Z.; Wang, Q.; Li, J. L.; Zhu, J. T.; Yang, Z. Z. Janus nanodisc of diblock copolymers. Adv. Mater. 2014, 26, 4469–4472.

    Article  CAS  PubMed  Google Scholar 

  26. Deng, R. H.; Liang, F. X.; Li, W. K.; Yang, Z. Z.; Zhu, J. T. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012–7017.

    Article  CAS  Google Scholar 

  27. Deng, R. H.; Xu, J. P.; Yi, G.-R.; Kim, J. W.; Zhu, J. T. Responsive colloidal polymer particles with ordered mesostructures. Adv. Funct. Mater. 2021, 31, 2008169.

    Article  CAS  Google Scholar 

  28. Ku, K. H.; Ryu, J. H.; Kim, J.; Yun, H.; Nam, C.; Shin, J. M.; Kim, Y.; Jang, S. G.; Lee, W. B.; Kim, B. J. Mechanistic study on the shape transition of block copolymer particles driven by length-controlled nanorod surfactants. Chem. Mater. 2018, 30, 8669–8678.

    Article  CAS  Google Scholar 

  29. Yan, N.; Zhu, Y. T.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183–13195.

    Article  CAS  Google Scholar 

  30. Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.

    Article  CAS  Google Scholar 

  31. Xu, J. P.; Zhu, J. T. Block copolymer colloidal particles with unique structures through three-dimensional confined assembly and disassembly. Chinese J. Polym. Sci. 2019, 37, 744–759.

    Article  CAS  Google Scholar 

  32. Deng, R. H.; Zheng, L. F.; Mao, X.; Li, B. H.; Zhu, J. T. Transformable colloidal polymer particles with ordered internal structures. Small. 2021, 17, 2006132.

    Article  CAS  Google Scholar 

  33. Hu, D. W.; Chang, X. H.; Xu, Y. Q.; Yu, Q. L.; Zhu, Y. T. Light-enabled reversible shape transformation of block copolymer particles. ACS Macro Lett. 2021, 10, 914–920.

    Article  CAS  PubMed  Google Scholar 

  34. Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y. T.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.

    Article  CAS  PubMed  Google Scholar 

  35. He, Y.; Zhang, Y.; Yan, N.; Zhu, Y. T.; Jiang, W.; Shi, D. A. Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale 2017, 9, 15056–15061.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Q. Y.; Fan, H. L.; Zhang, L.; Jin, Z. X. Nanodiscs generated from the solvent exchange of a block copolymer. Macromolecules 2020, 53, 7025–7033.

    Article  CAS  Google Scholar 

  37. Jin, Z. X.; Fan, H. L. Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter 2014, 10, 9212–9219.

    Article  CAS  PubMed  Google Scholar 

  38. Fan, H. L.; Jin, Z. X. Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes. Soft Matter 2014, 10, 2848–2855.

    Article  CAS  PubMed  Google Scholar 

  39. Dai, X. Z.; Qiang, X. L.; Hils, C.; Schmalz, H.; Gröschel, A. H. Frustrated microparticle morphologies of a semicrystalline triblock terpolymer in 3D soft confinement. ACS Nano 2021, 15, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  40. Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233.

    Article  CAS  Google Scholar 

  41. Navarro, L.; Thünemann, A. F.; Yokosawa, T.; Spiecker, E.; Klinger, D. Regioselective seeded polymerization in block copolymer nanoparticles: post-assembly control of colloidal features. Angew. Chem. Int. Ed. 2022, 61, e202208084.

    Article  CAS  Google Scholar 

  42. Navarro, L.; Thünemann, A. F.; Klinger, D. Solvent annealing of striped ellipsoidal block copolymer particles: reversible control over lamellae asymmetry, aspect ratio, and particle surface. ACS Macro Lett. 2022, 11, 329–335.

    Article  CAS  PubMed  Google Scholar 

  43. Cui, T. T.; Li, X. Y.; Dong, B.; Li, X.; Guo, M. X.; Wu, L. X.; Li, B. H.; Li, H. L. Janus onions of block copolymers via confined self-assembly. Polymer 2019, 174, 70–76.

    Article  CAS  Google Scholar 

  44. Li, Y. L.; Song, D. P.; Li, Y. S. Preparation of stimuli-responsive structural colored porous microspheres via emulsion self-assembly induced by bottlebrush triblock copolymers. Acta Polymerica Sinica (in Chinese) 2021, 52, 1591–1602.

    CAS  Google Scholar 

  45. Zhao, K. J.; Gao, Z. L.; Song, D. P.; Zhang, P. Y.; Cu, J. W. Assembly of catechol-modified polymer brushes for drug delivery. Polym. Chem. 2022, 13, 373–378.

    Article  CAS  Google Scholar 

  46. Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th Anniversary of macromolecular science viewpoint: block copolymer particles: tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306–317.

    Article  CAS  PubMed  Google Scholar 

  47. Ku, K. H.; Shin, J. M.; Yun, H.; Yi, G. R.; Jang, S. G.; Kim, B. J. Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater. 2018, 28, 1802961.

    Article  Google Scholar 

  48. Hwang, J.; Kim, S.; Wiesner, U.; Lee, J. Generalized access to mesoporous inorganic particles and hollow spheres from multicomponent polymer blends. Adv. Mater. 2018, 30, 1801127.

    Article  Google Scholar 

  49. Wang, M.; Mao, X.; Liu, J. Y.; Deng, B. T.; Deng, S.; Jin, S. H.; Li, W.; Gong, J.; Deng, R. H.; Zhu, J. T. A versatile 3D-confined self-assembly strategy for anisotropic and ordered mesoporous carbon microparticles. Adv. Sci. 2022, 2202394.

  50. Lee, Y. J.; Kim, H. E.; Oh, H.; Yun, H.; Lee, J.; Shin, S.; Lee, H. J.; Kim, B. J. Lens-shaped carbon particles with perpendicularly-oriented channels for high-performance proton exchange membrane fuel cells. ACS Nano 2022, 16, 2988–2996.

    Article  CAS  PubMed  Google Scholar 

  51. Deng, R. H.; Liu, S. Q.; Liang, F. X.; Wang, K.; Zhu, J. T.; Yang, Z. Z. Polymeric Janus particles with hierarchical structures. Macromolecules 2014, 47, 3701–3707.

    Article  CAS  Google Scholar 

  52. Zhang, J.; Kong, W. X.; Duan, H. M. Soft confinement-induced morphologies of the blends of AB diblock copolymers and C homopolymers. Langmuir 2017, 33, 3123–3133.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, R. Q.; Li, B. H.; Shi, A. C. Phase behavior of binary blends of diblock copolymer/homopolymer confined in spherical nanopores. Langmuir 2012, 28, 1569–1578.

    Article  PubMed  Google Scholar 

  54. Kim, E. J.; Shin, J. M.; Kim, Y. J.; Ku, K. H.; Yun, H.; Kim, B. J. Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets. Polym. Chem. 2019, 10, 2415–2423.

    Article  CAS  Google Scholar 

  55. Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.

    Article  CAS  PubMed  Google Scholar 

  56. Deng, S.; Deng, R. H.; Mao, X.; Xiong, B. J.; Wang, M.; Chen, S. B.; Binder, W. H.; Zhu, J. T.; Yang, Z. Z. Kinetically controlled supramolecular block copolymer self-assembly: multicolor photonic crystal patterns from a single formulation. CCS Chem. 2022, DOI: https://doi.org/10.31635/ccschem.022.202202530.

  57. Brandrup, J., Immergut, E. H., Grulke, E. A., Eds.; Polymer Handbook; Wiley: New York, 1999; Section VII, pp. 675–714.

    Google Scholar 

  58. Drelinkiewicz, A.; Sobczak, J.W.; Sobczak, E.; Krawczyk, M.; Zięba, A.; WaksmundzkaGóra, A. Physicochemical and catalytic properties of Pt-poly(4-vinylpyridine) composites. Mater. Chem. Phys. 2009, 114, 763–773.

    Article  CAS  Google Scholar 

  59. Deng, R. H.; Liang, F. X.; Li, W. K.; Liu, S. Q.; Liang, R. J.; Cai, M. L.; Yang, Z. Z.; Zhu, J. T. Shaping functional nano-objects by 3D confined supramolecular assembly. Small 2013, 9, 4099–4103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52003094 and 52273010). We also acknowledge the HUST Analytical and Testing Center and the HUST Core Facilities of Life Sciences for providing characterization services. Prof. Jiang Gong is appreciated for his help in carbonization experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-Hua Deng or Jin-Tao Zhu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2023_2935_MOESM1_ESM.pdf

Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JY., Song, HR., Wang, M. et al. Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization. Chin J Polym Sci 41, 787–793 (2023). https://doi.org/10.1007/s10118-023-2935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2935-1

Keywords

Navigation