Skip to main content
Log in

Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Entropic elasticity of single chains underlies many fundamental aspects of mechanical properties of polymers, such as high elasticity of polymer networks and viscoelasticity of polymer liquids. On the other hand, single chain elasticity is further rooted in chain connectivity. Recently, mechanically interlocked polymers, including polycatenanes and polyrotaxanes, which are formed by connecting their building blocks (cyclic and linear chains) through topological bonds (e.g., entanglements), emerge as a conceptually new kind of polymers. In this work, we employ computer simulations to study linear elasticity of single linear polycatenane (or [n]catenane), in which n rings are interlocked through catenation into a chain of linear architecture. Aim of this work is to illuminate the specific role of catenation topology in the elastic moduli of linear polycatenanes by comparing with those of their [n]bonded-ring counterparts, which are formed by connecting the same number of rings but via covalent bonds. Simulation results lead to a conclusion that topological catenation makes [n]catenanes exhibit larger elastic moduli than their linear and [n]bonded-ring counterparts, i.e., larger elastic moduli in the case of [n]catenanes. Furthermore, it is revealed that those [n]catenanes composed of a smaller number of rings (smaller n) possesses larger elastic moduli than others of the same total chain lengths. Molecular mechanisms of these findings are discussed based on conformational entropy due to topological constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory, P. J. in Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.

    Google Scholar 

  2. de Gennes, P. G. in Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, 1979.

    Google Scholar 

  3. Doi, M.; Edwards, S. F. in The Theory of Polymer Dynamics. Oxford University Press, New York, 1986.

    Google Scholar 

  4. Grosberg, A. Y.; Khokhlov, A. R. in Statistical Physics of Macromolecules. AIP, New York, 1994.

    Google Scholar 

  5. Rubinstein, M.; Colby, R. H. in Polymer Physics. Oxford University Press, New York, 2003.

    Google Scholar 

  6. Wang, Z. G. 50th Anniversary perspective: polymer conformation: a pedagogical review. Macromolecules 2017, 50, 9073–9114.

    CAS  Google Scholar 

  7. Treloar, L. R. G. in The Physics of Rubber Elasticity. Oxford University Press, New York, 1975.

    Google Scholar 

  8. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10, 14.

    CAS  PubMed  Google Scholar 

  9. Lehn, J. M. Perspectives in chemistry aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. 2015, 54, 3276–3289.

    CAS  Google Scholar 

  10. Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 2017, 29, 1606100.

    Google Scholar 

  11. Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019, 58, 9682–9695.

    CAS  Google Scholar 

  12. Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.

    CAS  PubMed  Google Scholar 

  14. Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13.

    CAS  PubMed  Google Scholar 

  15. Aida, T.; Meijer, E. W. Supramolecular polymers — we’ve come full circle. Isr. J. Chem. 2020, 60, 33–47.

    CAS  Google Scholar 

  16. Niu, Z.; Gibson, H. W. Polycatenanes. Chem. Rev. 2009, 109, 6024–6046.

    CAS  PubMed  Google Scholar 

  17. Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 2017, 358, 1434–1439.

    CAS  PubMed  Google Scholar 

  18. Rauscher, P. M.; Rowan, S. J.; de Pablo, J. J. Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and Rouse mode analysis. ACS Macro Lett. 2018, 7, 938–943.

    CAS  PubMed  Google Scholar 

  19. Wu, Z. T.; Zhou, J. J. Mechanical Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study. Chinese J. Polym. Sci. 2019, 37, 1298–1304.

    CAS  Google Scholar 

  20. Rauscher, P. M.; Schweizer, K. S.; Rowan, S. J.; de Pablo, J. J. Thermodynamics and structure of poly[n]catenane melts. Macromolecules 2020, 53, 3390–3408.

    CAS  Google Scholar 

  21. Rauscher, P. M.; Schweizer, K. S.; Rowan, S. J.; de Pablo, J. J. Dynamics of poly[n]catenane melts. J. Chem. Phys. 2020, 152, 214901.

    CAS  PubMed  Google Scholar 

  22. Zhang, G. J.; Zhang, J. G. Topological catenation induced swelling of ring polymers revealed by molecular dynamics simulation. Polymer 2020, 196, 122475.

    CAS  Google Scholar 

  23. Lei, H. Q.; Zhang, J. G.; Wang, L. M.; Zhang, G. J. Dimensional and shape properties of a single linear polycatenane: effect of catenation topology. Polymer 2021, 212, 123160.

    CAS  Google Scholar 

  24. Gibson, H. W.; Bheda, M. C.; Engen, P. T. Rotaxanes. catenanes, polyrotaxanes, polycatenanes and related materials. Prog. Polym. Sci. 1994, 19, 843–945.

    CAS  Google Scholar 

  25. Huang, F.; Gibson, H. W. Polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 2005, 30, 982–1018.

    CAS  Google Scholar 

  26. Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Polymericrotaxanes. Chem. Rev. 2009, 109, 5974–6023.

    CAS  PubMed  Google Scholar 

  27. Arunachalam, M.; Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 2014, 39, 1043–1073.

    CAS  Google Scholar 

  28. Hart, L. F.; Hertzog, J. E.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 2021, 6, 508–530.

    CAS  Google Scholar 

  29. Hudson, B.; Vinograd, J. Catenated circular DNA molecules in Hela cell mitochondria. Nature 1967, 216, 647–652.

    CAS  PubMed  Google Scholar 

  30. Clayton, D. A.; Vinograd, J. Circular dimer and catenate forms of mitochondrial DNA, n-Human leukaemic leucocytes. Nature 1967, 216, 652–657.

    CAS  PubMed  Google Scholar 

  31. Liang, C.; Mislow, K. Knots in proteins. J. Am. Chem. Soc. 1994, 116, 11189–11190.

    CAS  Google Scholar 

  32. Wikoff, W. R.; Liljas, L.; Duda, R. L.; Tsuruta, H.; Hendrix, R. W.; Johnson, J. E. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 2000, 289, 2129–2133.

    CAS  PubMed  Google Scholar 

  33. Zhou, H. X. Effect of catenation on protein folding stability. J. Am. Chem. Soc. 2003, 125, 9280–9281.

    CAS  PubMed  Google Scholar 

  34. Lee, B. I.; Kim, K. H.; Park, S. J.; Eom, S. H.; Song, H. K.; Suh, S. W. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J. 2004, 23, 2029–2038.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao, Z.; Roszak, A. W.; Gourlay, L. J.; Lindsay, J. G.; Isaacs, N. W. Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 2005, 13, 1661–1664.

    CAS  PubMed  Google Scholar 

  36. Boutz, D. R.; Cascio, D.; Whitelegge, J.; Perry, L. J.; Yeates, T. O. Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. J. Mol. Biol. 2007, 368, 1332–1344.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zimanyi, C. M.; Ando, N.; Brignole, E. J.; Asturias, F. J.; Stubbe, J.; Drennan, C. L. Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase. Structure 2012, 20, 1374–1383.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van Eldijk, M. B.; van Leeuwen, I.; Mikhailov, V. A.; Neijenhuis, L.; Harhangi, H. R.; van Hest, J. C. M.; Jetten, M. S. M.; den Camp, H. J. M. O.; Robinson, C. V.; Mecinovic, J. Evidence that the catenane form of CS2 hydrolase is not an artefact. Chem. Commun. 2013, 49, 7770.

    CAS  Google Scholar 

  39. Aguirre, C.; Goto, Y.; Costas, M. Thermal and chemical unfolding pathways of PaSdsA1 sulfatase. A homo-dimer with topologically interlinked chains. FEBS Lett. 2016, 590, 202–214.

    CAS  PubMed  Google Scholar 

  40. Pieters, B. J.; van Eldijk, M. B.; Nolte, R. J.; Mecinovic, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39.

    CAS  PubMed  Google Scholar 

  41. Dominguez-Gil, T.; Molina, R.; Dik, D. A.; Spink, E.; Mobashery, S.; Hermoso, J. A. X-ray structure of catenated lytic transglycosylase SltB1. Biochemistry 2017, 56, 6317–6320.

    CAS  PubMed  Google Scholar 

  42. Wang, X. W.; Zhang, W. B. Protein catenation enhances both the stability and activity of folded structural domains. Angew. Chem. Int. Ed. 2017, 56, 13985–13989.

    CAS  Google Scholar 

  43. Zhao, Y.; Cieplak, M. Stability of structurally entangled protein dimers. Proteins 2018, 86, 945–955.

    CAS  PubMed  Google Scholar 

  44. Hoffman, B. D.; Grashoff, C.; Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475, 316.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsua, H. P. and Binder, K. Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation. J. Chem. Phys. 2012, 136, 024901.

    Google Scholar 

  46. Saleh, O. A. Perspective: single polymer mechanics across the force regimes. J. Chem. Phys 2015, 142, 194902.

    PubMed  Google Scholar 

  47. Pincus, P. Excluded volume effects and stretched polymer chains. Macromolecules 1976, 9, 386.

    CAS  Google Scholar 

  48. Marko, J. F.; Siggia, E. D. Stretching DNA. Macromolecules 1995, 28, 8759.

    CAS  Google Scholar 

  49. Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S. Entropic elasticity of X-phage DNA. Science 1994, 265, 1599.

    CAS  PubMed  Google Scholar 

  50. Dutta, S. and Sing, C. E. Two stretching regimes in the elasticity of bottlebrush polymers. Macromolecules 2020, 53, 6946–6955.

    CAS  Google Scholar 

  51. Pakula, T.; Jeszka, K. Simulation of single complex macromolecules. 1. Structure and dynamics of catenanes. Macromolecules 1999, 32, 6821–6830.

    CAS  Google Scholar 

  52. Liu, G.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Polycatenanes: synthesis, characterization, and physical understanding. Chem. Soc. Rev. 2022, 51, 4928.

    CAS  PubMed  Google Scholar 

  53. Li, J.; Gu, F.; Yao, N.; Wang, H.; Liao, Q. Double asymptotic structures of topologically interlocked molecules. ACS Macro Lett. 2021, 10, 1094–1098.

    PubMed  Google Scholar 

  54. Chiarantoni, P. and Micheletti, C. Effect of ring rigidity on the statics and dynamics of linear catenanes. Macromolecules 2022, 55, 4523–4532.

    CAS  Google Scholar 

  55. Hagita, K.; Murashima, T.; and Sakata, N. Mathematical classification and rheological properties of ring catenane structures. Macromolecules 2022, 55, 166–177.

    CAS  Google Scholar 

  56. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057.

    CAS  Google Scholar 

  57. Zhang, G. J.; Moreira, L. A.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K. Equilibration of high molecular weight polymer melts:a hierarchical strategy. ACS Macro Lett. 2014, 3, 198–203.

    PubMed  Google Scholar 

  58. Zhang, G. J.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K. Communication:one size fits all: Equilibrating chemically different polymer liquids through universal long-wavelength description. J. Chem. Phys. 2015, 142, 221102.

    PubMed  Google Scholar 

  59. Moreira, L. A.; Zhang, G. J.; Muller, F.; Stuehn, T.; Kremer, K. Direct equilibration and characterization of polymer melts for computer simulations. Macromol. Theory Simul. 2015, 24, 419–431.

    CAS  Google Scholar 

  60. Zhang, G. J.; Chazirakis, A.; Harmandaris, V. A.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K. Hierarchical modelling of polystyrene melts: from soft blobs to atomistic resolution. Soft Matter 2019, 15, 289.

    CAS  PubMed  Google Scholar 

  61. Smrek, J.; Kremer, K.; Rosa, A. Threading of unconcatenated ring polymers at high concentrations: double-folded vs time-equilibrated structures. ACS Macro Lett. 2019, 8, 155–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of non-concatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 2011, 134, 204904.

    PubMed  Google Scholar 

  63. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of non-concatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 2011, 134, 204905.

    PubMed  Google Scholar 

  64. Cai, X.; Liang, C.; Liu, H.; Zhang, G. J. Conformation and structure of ring polymers in semidilute solutions: A molecular dynamics simulation study. Polymer 2022, 253, 124953.

    CAS  Google Scholar 

  65. Recently, Dutta and Benetatos considered an interesting question, whether results from these two ensemble simulations for single chain elasticity, i.e., constant-force simulation and constant-extension simulation are equivalent, finally concluded that there is an inequivalence of the constant-force and the constant-extension ensembles for studying single chain elasticity of polymers. A possible reason underlying this finding could be lack of a well-defined thermodynamic limit for the single chain systems. while it is not a problem in the conventional macroscopic systems. Dutta, S.; Benetatos, P. Soft Matter 2018, 14, 6857.

  66. Strobl, G. in The Physics of Polymers. Springer, 2007.

Download references

Acknowledgments

It is a great pleasure to thank Dr. Jianguo Zhang and Dr. Jiajia Zhou for useful discussion. This work was financially supported by the National Natural Science Foundation of China (No. 21873023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jie Zhang.

Ethics declarations

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YX., Cai, XQ. & Zhang, GJ. Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. Chin J Polym Sci 41, 1486–1496 (2023). https://doi.org/10.1007/s10118-023-2902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2902-x

Keywords

Navigation