Skip to main content
Log in

A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nonfused ring electron acceptors (NFREAs) have attracted much attention due to their concise synthetic routes and low cost. However, developing high-performance NFREAs with simple structure remains a great challenge. In this work, a simple building block (POBT) with noncovalently conformational locks (NoCLs) was designed and synthesized. Single-crystal X-ray study indicated the presence of S⋯O NOCLs in POBT, thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT. Two novel NFREAs based on CPT and POBT were developed, namely TT-CPT and TT-POBT, respectively. Besides, TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT, indicating the introduction of S⋯O NoCLs can enhance the molecular rigidity even if simplifying the molecular structure. As a result, the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%, much higher than that of TT-CPT counterpart (7.03%), mainly resulting from the tighter π-π stacking, improved and balanced charge transport, and more favorable film morphology. This work demonstrates the potential of the simple building block POBT with NoCLs towards constructing low-cost and high-performance NFREAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karki, A.; Gillett, A. J.; Friend, R. H.; Nguyen, T. Q. The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 2021, 11, 2003441.

    Article  CAS  Google Scholar 

  2. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    Article  CAS  Google Scholar 

  3. Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2021, 65, 224–268.

    Article  Google Scholar 

  4. Guo, X.; Facchetti, A.; Marks, T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 2014, 114, 8943–9021.

    Article  CAS  PubMed  Google Scholar 

  5. Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

    Article  CAS  Google Scholar 

  6. Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497.

    Article  CAS  Google Scholar 

  7. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  9. Swick, S. M.; Alzola, J. M.; Sangwan, V. K.; Amsterdam, S. H.; Zhu, W.; Jones, L. O.; Powers-Riggs, N.; Facchetti, A.; Kohlstedt, K. L.; Schatz, G. C.; Hersam, M. C.; Wasielewski, M. R.; Marks, T. J. Fluorinating π-extended molecular acceptors yields highly connected crystal structures and low reorganization energies for efficient solar cells. Adv. Energy Mater. 2020, 10, 2000635.

    Article  CAS  Google Scholar 

  10. Yu, H.; Qi, Z.; Zhang, J.; Wang, Z.; Sun, R.; Chang, Y.; Sun, H.; Zhou, W.; Min, J.; Ade, H.; Yan, H. Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency. J. Mater. Chem. A 2020, 8, 23756–23765.

    Article  CAS  Google Scholar 

  11. Liu, B. Y.; Xie, C.; Ge, C. W.; Cui, M. M.; Yang, W.; Ma, Z. F.; Gao, X. K.; Zhou, Y. H.; Zhang, Q. Benzobisthiazole polymer with resonance-assisted hydrogen bonds for high-performance transistor and solar cell applications. Chinese J. Polym. Sci. 2022, 40, 147–156.

    Article  Google Scholar 

  12. Nie, Q.; Tang, A.; Guo, Q.; Zhou, E. Benzothiadiazole-based non-fullerene acceptors. Nano Energy 2021, 87, 106174.

    Article  CAS  Google Scholar 

  13. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy 2021, 6, 605–613.

    Article  CAS  Google Scholar 

  14. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  15. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    Article  CAS  Google Scholar 

  16. Zhang, Z.-G.; Bai, Y.; Li, Y. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13.

    Article  Google Scholar 

  17. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  18. Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary organic solar cells breaking 19% via manipulating vertical component distribution. Adv. Mater. 2022, 34, 2204718.

    Article  CAS  Google Scholar 

  19. Zhou, Y.; Li, M.; Lu, H.; Jin, H.; Wang, X.; Zhang, Y.; Shen, S.; Ma, Z.; Song, J.; Bo, Z. High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 2021, 31, 2101742.

    Article  CAS  Google Scholar 

  20. Chen, Z.; Ma, S. S.; Zhang, K.; Hu, Z. C.; Yin, Q. W.; Huang, F.; Cao, Y. A near-infrared non-fullerene acceptor with thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene core for polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 35–42.

    Article  CAS  Google Scholar 

  21. Huang, H.; Guo, Q.; Feng, S.; Zhang, C. e.; Bi, Z.; Xue, W.; Yang, J.; Song, J.; Li, C.; Xu, X.; Tang, Z.; Ma, W.; Bo, Z. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat. Commun. 2019, 10, 3038.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, C.; Zhang, X.; Yu, N.; Gu, X.; Qin, L.; Wei, Y.; Liu, X.; Zhang, J.; Wei, Z.; Tang, Z.; Shi, Q.; Huang, H. Simple nonfused-ring electron acceptors with noncovalently conformational locks for low-cost and high-performance organic solar cells enabled by end-group engineering. Adv. Funct. Mater. 2022, 32, 2108861.

    Article  CAS  Google Scholar 

  23. Wang, X.; Lu, H.; Liu, Y.; Zhang, A.; Yu, N.; Wang, H.; Li, S.; Zhou, Y.; Xu, X.; Tang, Z.; Bo, Z. Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 2021, 11, 2102591.

    Article  CAS  Google Scholar 

  24. Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10, 2152.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chang, M.; Meng, L.; Wang, Y.; Ke, X.; Yi, Y. Q. Q.; Zheng, N.; Zheng, W.; Xie, Z.; Zhang, M.; Yi, Y.; Zhang, H.; Wan, X.; Li, C.; Chen, Y. Achieving an efficient and stable morphology in organic solar cells via fine-tuning the side chains of small-molecule acceptors. Chem. Mater. 2020, 32, 2593–2604.

    Article  CAS  Google Scholar 

  26. Ma, L.; Zhang, S.; Zhu, J.; Wang, J.; Ren, J.; Zhang, J.; Hou, J. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun. 2021, 12, 5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, J.; Xu, X.; Yu, L.; Li, R.; Li, Y.; Peng, Q. Highly efficient non-fused-ring electron acceptors enabled by the conformational lock and structural isomerization effects. ACS Appl. Mater. Interfaces 2021, 13, 25214–25223.

    Article  CAS  PubMed  Google Scholar 

  28. Cao, J.; Qu, S.; Yang, L.; Wang, H.; Du, F.; Yu, J.; Tang, W. Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells. Chem. Eng. J. 2021, 412, 128770.

    Article  CAS  Google Scholar 

  29. Peng, W.; Zhang, G.; Zhu, M.; Xia, H.; Zhang, Y.; Tan, H.; Liu, Y.; Chi, W.; Peng, Q.; Zhu, W. Simple-structured nir-absorbing small-molecule acceptors with a thiazolothiazole core: multiple noncovalent conformational locks and d-a effect for efficient OSCs. ACS Appl. Mater. Interfaces 2019, 11, 48128–48133.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X.; Qin, L.; Liu, X.; Zhang, C.; Yu, J.; Xiao, Z.; Zheng, N.; Wang, B.; Wei, Y.; Xie, Z.; Wu, Y.; Wei, Z.; Wang, K.; Gao, F.; Ding, L.; Huang, H. Enhancing the photovoltaic performance of triplet acceptors enabled by side-chain engineering. Solar RRL 2021, 5, 2100522.

    Article  CAS  Google Scholar 

  31. Liu, X.; Wei, Y.; Zhang, X.; Qin, L.; Wei, Z.; Huang, H. An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci. China Chem. 2021, 64, 228–231.

    Article  CAS  Google Scholar 

  32. Gu, X.; Wei, Y.; Liu, X.; Yu, N.; Li, L.; Han, Z.; Gao, J.; Li, C.; Wei, Z.; Tang, Z.; Zhang, X.; Huang, H. Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Sci. China Chem. 2022, 65, 926–933.

    Article  CAS  Google Scholar 

  33. Huang, H.; Chen, Z.; Ponce Ortiz, R.; Newman, C.; Usta, H.; Lou, S.; Youn, J.; Noh, Y. Y.; Baeg, K. J.; Chen, L. X.; Facchetti, A.; Marks, T. J. Combining electron-neutral building blocks with intramolecular “conformational locks” affords stable, high-mobility p- and n- channel polymer semiconductors. J. Am. Chem. Soc. 2012, 134, 10966–73.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291–10318.

    Article  CAS  PubMed  Google Scholar 

  35. Yu, S.; Peng, A.; Zhang, S.; Huang, H. Noncovalent conformational locks in organic semiconductors. Sci. China Chem. 2018, 61, 1359–1367.

    Article  CAS  Google Scholar 

  36. Wen, T. J.; Liu, Z. X.; Chen, Z.; Zhou, J.; Shen, Z.; Xiao, Y.; Lu, X.; Xie, Z.; Zhu, H.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew. Chem. Int. Ed. 2021, 60, 12964–12970.

    Article  CAS  Google Scholar 

  37. Geng, S. Z.; Yang, W. T.; Gao, J.; Li, S. X.; Shi, M. M.; Lau, T. K.; Lu, X. H.; Li, C. Z.; Chen, H. Z. Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells. Chinese J. Polym. Sci. 2019, 37, 1005–1014.

    Article  CAS  Google Scholar 

  38. Zhang, X.; Qin, L.; Li, L.; Liu, X.; Wei, Y.; Huang, H. A new noncovalently fused-ring electron acceptor based on 3,7-dialkyloxybenzo[1,2-b:4,5-b′]dithiophene for low-cost and high-performance organic solar cells. Macromol. Rapid Commun. 2022, 43, 2200085.

    Article  CAS  Google Scholar 

  39. Li, C.; Gu, X.; Chen, Z.; Han, X.; Yu, N.; Wei, Y.; Gao, J.; Chen, H.; Zhang, M.; Wang, A.; Zhang, J.; Wei, Z.; Peng, Q.; Tang, Z.; Hao, X.; Zhang, X.; Huang, H. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J. Am. Chem. Soc. 2022, 144, 14731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi, Y. Q. Q.; Feng, H.; Ke, X.; Yan, J.; Chang, M.; Wan, X.; Li, C.; Chen, Y. A cyclopentadithiophene-bridged small molecule acceptor with near-infrared light absorption for efficient organic solar cells. J. Mater. Chem. C 2019, 7, 4013–4019.

    Article  CAS  Google Scholar 

  41. Hu, X.; Zhong, C., Li, X.; Jia, X.; Wei, Y.; Xie, L. Synthesis and application of cyclopentadithiophene derivatives. Acta Chim. Sinica 2021, 79, 953–966.

    Article  CAS  Google Scholar 

  42. Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H. High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering. Angew. Chem. Int. Ed. 2021, 60, 12475–12484.

    Article  CAS  Google Scholar 

  43. Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y. Nonfused nonfullerene acceptors with an A-D-A′-D-A framework and a benzothiadiazole core for high-performance organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 16531–16540.

    Article  CAS  PubMed  Google Scholar 

  44. Altman, R. A.; Buchwald, S. L. Pd-catalyzed Suzuki—Miyaura reactions of aryl halides using bulky biarylmonophosphine ligands. Nat. Protoc. 2007, 2, 3115–3121.

    Article  CAS  PubMed  Google Scholar 

  45. Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. N-substituted 2-aminobiphenylpalladium methanesulfonate precatalysts and their use in C—C and C—N cross-couplings. J. Org. Chem. 2014, 79, 4161–4166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, X.; Qin, L.; Li, Y.; Yu, J.; Chen, H.; Gu, X.; Wei, Y.; Lu, X.; Gao, F.; Huang, H. High-performance all-small-molecule organic solar cells enabled by regio-isomerization of noncovalently conformational locks. Adv. Funct. Mater. 2022, 32, 2112433.

    Article  CAS  Google Scholar 

  47. Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture). Angew. Chem. Int. Ed. 1993, 32, 1111–1121.

    Article  Google Scholar 

  48. Yu, H.; Qi, Z.; Li, X.; Wang, Z.; Zhou, W.; Ade, H.; Yan, H.; Chen, K. Modulating energy level on an A-D-A′-D-A-type unfused acceptor by a benzothiadiazole core enables organic solar cells with simple procedure and high performance. Solar RRL 2020, 4, 2000421.

    Article  CAS  Google Scholar 

  49. Cao, J.; Wang, H.; Qu, S.; Yu, J.; Yang, L.; Zhang, Z.; Du, F.; Tang, W. 2D side-chain engineered asymmetric acceptors enabling over 14% efficiency and 75% fill factor stable organic solar cells. Adv. Funct. Mater. 2020, 30, 2006141.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52103352, 51925306 and 52120105006), National Key R&D Program of China (No. 2018FYA 0305800), Key Research Program of Chinese Academy of Sciences (No. XDPB08-2), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000), the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2022165), and the Fundamental Research Funds for the Central Universities. DFT results described in this article were obtained from the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Hui Huang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2888_MOESM1_ESM.pdf

A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XB., Gao, JH., Han, ZY. et al. A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors. Chin J Polym Sci 41, 556–563 (2023). https://doi.org/10.1007/s10118-022-2888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2888-9

Keywords

Navigation