Skip to main content
Log in

Fibrous Separator with Surface Modification and Micro-Nano Fibers Lamination Enabling Fast Ion Transport for Lithium-Ion Batteries

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries. In this work, taking the advantages of microfibrous and nanofibrous membranes and compensating for their defects, we developed a composited separator (GOPPH) with excellent overall performance by first wetting-modifying the polyethylene terephthalate microfibers and then laminating a polyvinylidene fluoride-hexafluoropropylene nanofiber layer. Such a combination not only offers the GOPPH separator, from the perspective of structure, with high porosity and hierarchical structure in terms of fiber diameter and pore size, but also provides satisfactory features including wettability, mechanical strength and thermal shutdown function that benefit from the selected materials. Meanwhile, as determined by experimental and theoretical approaches, the obtained GOPPH separator exhibits considerably enhanced lithium ion transport ability with a high lithium ion transference number and transport rate, which thereby endowing the cell with superior cycling stability with a capacity retention of 93% after 200 cycles at 1 C. Therefore, considering battery safety and performance, the GOPPH fibrous membrane could be a promising separator candidate for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, 1901689.

    Article  Google Scholar 

  2. Jiang, X. Y.; Zhu, X. M.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 25970–25975.

    Article  CAS  Google Scholar 

  3. Waqas, M.; Ali, S.; Lv, W.; Chen, D.; Boateng, B.; He, W. High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries. Adv. Mater. Interfaces 2019, 6, 1801330.

    Article  Google Scholar 

  4. Yang, P.; Zhang, P.; Shi, C.; Chen, L.; Dai, J.; Zhao, J. The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J. Membr. Sci. 2015, 474, 148–155.

    Article  CAS  Google Scholar 

  5. Heidari, A. A.; Mahdavi, H. Recent development of polyolefin-based microporous separators for Li-ion batteries: a review. Chem. Rec. 2020, 20, 570–595.

    Article  CAS  Google Scholar 

  6. Jovanovic, P.; Mirshekarloo, M. S.; Hill, M. R.; Hollenkamp, A. F.; Majumder, M.; Shaibani, M. Separator design variables and recommended characterization methods for viable lithium-sulfur batteries. Adv. Mater. Technol. 2021, 6, 2001136.

    Article  CAS  Google Scholar 

  7. Yang, Y.; Wang, W.; Meng, G.; Zhang, J. Function-directed design of battery separators based on microporous polyolefin membranes. J. Mater. Chem. A 2022, 14137–14170.

  8. Liu, L.; Wang, Y.; Gao, C. Y.; Yang, C.; Wang, K.; Li, H. B.; Gu, H. T. Ultrathin ZrO2-coated separators based on surface sol-gel process for advanced lithium ion batteries. J. Membr. Sci. 2019, 592, 8.

    Article  Google Scholar 

  9. Din, M. M. U.; Murugan, R. Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries. Sci. Rep. 2019, 9, 16795.

    Article  Google Scholar 

  10. Chen, P.; Wang, Z.; Zhang, B.; Zhao, J.; Liu, H.; Guo, X.; Liu, W.; Su, Z. Multi-functional TiO2 nanosheets/carbon nanotubes modified separator enhanced cycling performance for lithium-sulfur batteries. Int. J. Energy Res. 2020, 44, 3231–3240.

    Article  CAS  Google Scholar 

  11. Wu, W.; Liu, Y.; Zhu, G.; An, J.; Dou, G.; Wang, Y.; Liu, J.; Sun, D.; Guo, Y. Application of polyethylene separator modified by methyl acrylic polymer in lithium ion battery. Chem. J. Chinese Univ. 2019, 40, 2332–2339.

    CAS  Google Scholar 

  12. Li, J. D.; Bi, S. H.; Li, M. M.; Xian, Y. P.; Shui, Y. G.; Yao, Y. Y.; Wu, M. Q. Rapid homogenization preparation of the mussel-inspired hydrophilic separator for high power lithium-ion batteries. J. Appl. Polym. Sci. 2020, 137, 49052.

    Article  CAS  Google Scholar 

  13. Merighi, S.; Mazzocchetti, L.; Benelli, T.; Maccaferri, E.; Zucchelli, A.; D’Amore, A.; Giorgini, L. A new wood surface flame-retardant based on poly-m-aramid electrospun nanofibers. Polym. Eng. Sci. 2019, 59, 2541–2549.

    Article  CAS  Google Scholar 

  14. Chen, Y.; Qiu, L.; Ma, X.; Chu, Z.; Zhuang, Z.; Dong, L.; Du, P.; Xiong, J. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. Solid State Ionics 2020, 347, 115253.

    Article  CAS  Google Scholar 

  15. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

    Article  CAS  Google Scholar 

  16. Kim, J. H.; Kim, J. H.; Choi, E. S.; Kim, J. H.; Lee, S. Y. Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries. RSC Adv. 2014, 4, 54312–54321.

    Article  CAS  Google Scholar 

  17. Li, W.; Li, X.; Xie, X.; Yuan, A.; Xia, B. Effect of drying temperature on a thin PVDF-HFP/PET composite nonwoven separator for lithium-ion batteries. Ionics 2017, 23, 929–935.

    Article  CAS  Google Scholar 

  18. Li, W.; Li, X.; Yuan, A.; Xie, X.; Xia, B. Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 2016, 22, 2143–2149.

    Article  CAS  Google Scholar 

  19. Zhu, C.; Nagaishi, T.; Shi, J.; Lee, H.; Wong, P. Y.; Sui, J.; Hyodo, K.; Kim, I. S. Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly(vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26400–26406.

    Article  CAS  Google Scholar 

  20. Fu, S.; Zhou, H.; Wang, H.; Niu, H.; Yang, W.; Shao, H.; Lin, T. Amphibious superamphiphilic fabrics with self-healing underwater superoleophilicity. Mater. Horiz. 2019, 6, 122–129.

    Article  CAS  Google Scholar 

  21. Hao, Z.; Wu, C.; Zhang, Q.; Liu, J.; Wang, H. A sandwich-structured separator based on in situ coated polyaniline on polypropylene membrane for improving the electrolyte wettability in lithiumion batteries. Int. J. Energy Res. 2019, 43, 8049–8056.

    CAS  Google Scholar 

  22. Zhu, M.; Wang, Y.; Long, L.; Fu, X.; Sui, G.; Yang, X. An optimal carbon fiber interlayer integrated with bio-based gel polymer electrolyte enabling trapping-diffusion-conversion of polysulfides in lithium-sulfur batteries. Chem. Eng. J. 2019, 370, 1068–1076.

    Article  CAS  Google Scholar 

  23. Wang, L.; Liu, F.; Shao, W.; Cui, S.; Zhao, Y.; Zhou, Y.; He, J. Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Compos. Commun. 2019, 16, 150–157.

    Article  Google Scholar 

  24. Chen, Y.; Jia, Z.; Shafiq, M.; Xie, X.; Xiao, X.; Castro, R.; Rodrigues, J.; Wu, J.; Zhou, G.; Mo, X. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids Surf. B 2021, 201, 111637.

    Article  CAS  Google Scholar 

  25. Yang, Y.; Zhang, J. Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current density and cycling capacity. Energy Storage Mater. 2021, 37, 135–142.

    Article  CAS  Google Scholar 

  26. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Huang, K.; Zhang, P.; Li, H.; Mi, H. PVDF-HFP based polymer electrolytes with high Li+ transference number enhancing the cycling performance and rate capability of lithium metal batteries. Appl. Surf. Sci. 2022, 574, 151593.

    Article  CAS  Google Scholar 

  28. Zhang, Y. C.; Qiu, Z. F.; Wang, Z. Y.; Yuan, S. Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries. J. Colloid Interface Sci. 2022, 607, 742–751.

    Article  CAS  Google Scholar 

  29. Yang, Y.; Zhang, J. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.

    Article  Google Scholar 

  30. Doyle, M.; Fuller, T. F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533.

    Article  CAS  Google Scholar 

  31. Zhang, H.; Sheng, L.; Bai, Y.; Song, S.; Liu, G.; Xue, H.; Wang, T.; Huang, X.; He, J. Amino-functionalized Al2O3 particles coating separator with excellent lithium-ion transport properties for high-power density lithium-ion batteries. Adv. Eng. Mater. 2020, 22, 1901545.

    Article  CAS  Google Scholar 

  32. Ahn, Y. K.; Kwon, Y. K.; Kim, K. J. Surface-modified polyethylene separator with hydrophilic property for enhancing the electrochemical performance of lithium-ion battery. Int. J. Energy Res. 2020, 44, 6651–6659.

    Article  CAS  Google Scholar 

  33. Liu, X.; Wu, Y.; Yang, F.; Wang, S.; Zhang, B.; Wang, L. An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries. J. Membr. Sci. 2021, 626, 119190.

    Article  CAS  Google Scholar 

  34. A, S. Z.; A, J. L.; A, M. D.; A, H. H.; B, Z. S. A. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur. Polym. J. 2022, 171, 111222.

    Article  Google Scholar 

  35. Hao, J.; Lei, G.; Li, Z.; Wu, L.; Xiao, Q.; Wang, L. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J. Membr. Sci. 2013, 428, 11–16.

    Article  CAS  Google Scholar 

  36. Xie, X. H.; Li, X. Z.; Li, W. B.; Shao, G. J.; Xia, B. J. Fabrication and performance of PET-ceramic Separators. J. Inorg. Mater. 2016, 31, 1301–1305.

    Article  Google Scholar 

  37. Zhou, Y. T.; Yang, J.; Liang, H. Q.; Pi, J. K.; Zhang, C.; Xu, Z. K. Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries. Compos. Commun. 2018, 8, 46–51.

    Article  Google Scholar 

  38. Liu, Q.; Xia, M.; Chen, J.; Tao, Y.; Wang, Y.; Liu, K.; Li, M.; Wang, W.; Wang, D. High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator. Electrochim. Acta 2015, 176, 949–955.

    Article  CAS  Google Scholar 

  39. Ali, S.; Tan, C.; Waqas, M.; Lv, W.; Wei, Z.; Wu, S.; Boateng, B.; Liu, J.; Ahmed, J.; Xiong, J.; Goodenough, J. B.; He, W. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1701147.

    Article  Google Scholar 

  40. Wu, Y. S.; Yang, C. C.; Luo, S. P.; Chen, Y. L.; Wei, C. N.; Lue, S. J. PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries. Int. J. Hydrogen Energy 2017, 42, 6862–6875.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of Jiangsu Province, China (No. BK20190223), Jiangsu Advanced Textile Engineering Technology Center (No. XJFZ/2021/15) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 22KJA480004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Zhen Wei or Yan Zhao.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2856_MOESM1_ESM.pdf

Fibrous Separator with Surface Modification and Micro-Nano Fibers Lamination Enabling Fast Ion Transport for Lithium-Ion Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YG., Fan, L., Li, HQ. et al. Fibrous Separator with Surface Modification and Micro-Nano Fibers Lamination Enabling Fast Ion Transport for Lithium-Ion Batteries. Chin J Polym Sci 41, 222–232 (2023). https://doi.org/10.1007/s10118-022-2856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2856-4

Keywords

Navigation