Skip to main content
Log in

Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Conventional fluorescent polymers are featured by large conjugation structures. In contrast, a new class of fluorescent polymers without any conjugations is gaining great interest in immerging applications. Polyamide is a typical member of the conjugation-free fluorescent polymers. However, studies on their electrophotonic property are hardly available, although widely used in many fields. Herein, poly(ethylene succinamide), PA24, is synthesized; its chemical structure confirmed through multiple techniques (NMR, FTIR, XRD, etc.). PA24 is highly emissive as solid and in its solution at room temperature, and the emission is excitation and concentration dependant, with an unusual blue shift under excitation from 270 nm to 320 nm, a hardly observed phenomenon for all fluorescent polymers. Quite similar emission behavior is also observed under cryogenic condition at 77 K. Its emission behavior is thoroughly studied; the ephemeral emission blue-shift is interpreted through Förster resonance energy transfer. Based on its structures, the emission mechanism is ascribed to cluster-triggered emission, elucidated from multi-analyses (NMR, FTIR, UV absorbance and DLS). In presence of a dozen of competitive metal ions, PA24 emission at 450 nm is selectively quenched by Fe3+. PA24 is used as probe for Fe3+ and H2O2 detections and in data encryption. Therefore, this work provides a novel face of polyamide with great potential applications as sensors in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuji, H.; Nakamura, E. Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res. 2017, 50, 396–406.

    Article  CAS  Google Scholar 

  2. Chen, Y.; Zhang, W.; Cai, Y.; Kwok, R. T. K.; Hu, Y.; Lam, J. W. Y.; Gu, X.; He, Z.; Zhao, Z.; Zheng, X.; Chen, B.; Gui, C.; Tang, B. Z. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg2+ Sensing. Chem. Sci. 2017, 8, 2047–2055.

    Article  CAS  Google Scholar 

  3. Cheng, Y.; Wang, J.; Qiu, Z.; Zheng, X.; Leung, N. L. C.; Lam, J. W. Y.; Tang, B. Z. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 2017, 29, 1703900.

    Article  Google Scholar 

  4. Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–735.

    Article  CAS  Google Scholar 

  5. Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci. 2019, 37, 289–301.

    Article  CAS  Google Scholar 

  6. Yang, Y.; Chen, L.; Sun, M.; Wang, C.; Fan, Z.; Du, J. Biodegradable polypeptide-based vesicles with intrinsic blue fluorescence for antibacterial visualization. Chinese J. Polym. Sci. 2021, 39, 1412–1420.

    Article  CAS  Google Scholar 

  7. Yuan, W. Z.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 560–574.

    Article  Google Scholar 

  8. Du, L.; Jiang, B.; Chen, X.; Wang, Y.; Zou, L.; Liu, Y.; Gong, Y.; Wei, C.; Yuan, W. Z. Clustering-triggered emission of cellulose and its derivatives. Chinese J. Polym. Sci. 2019, 37, 409–415.

    Article  CAS  Google Scholar 

  9. Zhang, H.; Zhao, Z.; McGonigal, P. R.; Ye, R.; Liu, S.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J.; Rogach, A. L.; Tang, B. Z. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292.

    Article  CAS  Google Scholar 

  10. Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W. Z. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655.

    Article  CAS  Google Scholar 

  11. Tomalia, D. A.; Klajnert-Maculewicz, B.; Johnson, K. A. M.; Brinkman, H. F.; Janaszewska, A.; Hedstrand, D. M. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog. Polym. Sci. 2019, 30, 35–117.

    Article  Google Scholar 

  12. Liao, P.; Huang, J.; Yan, Y; Tang, B. Z. Clusterization-triggered emission (CTE): one for all, all for one. Mater. Chem. Front. 2021, 5, 6693–6717.

    Article  CAS  Google Scholar 

  13. Du, C.; Cheung, C. S.; Zheng, H.; Li, D.; Du, W.; Gao, H.; Liang, G.; Gao, H. Bathochromic-shifted emissions by postfunctionalization of nonconjugated polyketones. ACS Appl. Mater. Interfaces 2021, 13, 59288–59297.

    Article  CAS  Google Scholar 

  14. Sun, C.; Jiang, X.; Li, B.; Li, S.; Kong, X. Z. Fluorescence behavior and mechanisms of poly(ethylene glycol) and their applications in Fe3+ and Cr6+ detections, data encryption, and cell imaging. ACS Sustain. Chem. Eng. 2021, 3, 5166–5178.

    Article  Google Scholar 

  15. Cao, H.; Li, B.; Jiang, X.; Zhu, X.; Kong, X. Z. Fluorescent linear polyurea based on toluene diisocyanate: easy preparation, broad emission and potential applications. Chem. Eng. J. 2020, 399, 125867.

    Article  CAS  Google Scholar 

  16. Wang, Q.; Li, B.; Cao, H.; Jiang, X.; Kong, X. Z. Aliphatic amide salt, a new type of luminogen: characterization, emission and biological applications. Chem. Eng. J. 2020, 388, 124182.

    Article  CAS  Google Scholar 

  17. Restani, R. B.; Morgado, P. I.; Ribeiro, M. P.; Correia, I. J.; Aguiar-Ricardo, A.; Bonifacio, V. D. B. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew. Chem. Int. Ed. 2012, 51, 5162–5165.

    Article  CAS  Google Scholar 

  18. Bai, L.; Yan, H.; Wang, L.; Bai, T.; Yuan, L.; Zhao, Y.; Feng, W. Supramolecular hyperbranched poly(amino ester)s with homogeneous electron delocalization for multi-stimuliresponsive fluorescence. Macromol. Mater. Eng. 2020, 305, 2000126.

    Article  CAS  Google Scholar 

  19. Liu, M. N.; Chen, W. G.; Liu, H. J.; Chen, Y. Facile synthesis of intrinsically photoluminescent hyperbranched polyethylenimine and its specific detection for copper ion. Polymer 2019, 172, 110–116.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Z. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 39, 1800528.

    Article  Google Scholar 

  21. Bai, L.; Yan, H.; Bai, T.; Guo, L.; Lu, T.; Zhao, Y.; Li, C. Energy-transfer-induced multiexcitation and enhanced emission of hyperbranched polysiloxane. Biomacromoluceles 2020, 21, 3724–3735.

    Article  CAS  Google Scholar 

  22. Chen, X.; Liu, X.; Lei, J.; Xu, L.; Zhao, Z.; Kausar, F.; Xie, X.; Zhu, X.; Zhang, Y.; Yuan, W. Z. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol. Syst. Des. Eng. 2018, 3, 364–375.

    Article  CAS  Google Scholar 

  23. Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W. Z.; Zhang, Y. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592.

    Article  CAS  Google Scholar 

  24. Zhou, Q.; Yang, T.; Zhong, Z.; Kausar, F.; Wang, Z.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission strategy towards tunable multicolor persistent phosphorescence. Chem. Sci. 2020, 11, 2926–2933.

    Article  CAS  Google Scholar 

  25. Geise, G. M. Why Polyamide reverse-osmosis membranes work so well. Science 2021, 371, 31–32.

    Article  CAS  Google Scholar 

  26. Meier, M. A. R. Plant-oil-based polyamides and polyurethanes: toward sustainable nitrogen-containing thermoplastic materials. Macromol. Rapid Commun. 2019, 40, 1800524.

    Article  Google Scholar 

  27. Yu, Z.; Pandian, G. N.; Hidaka, T.; Sugiyama, H. Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv. Drug Deliv. Rev. 2019, 147, 66–85.

    Article  CAS  Google Scholar 

  28. Cao, Y.; Wang, L.; Gao, Y.; Sun, T.; Zhou, Y.; Hu, H.; Wang, D.; Dong, X. Morphology and electric conductivity controlling of in situ polymerized poly(decamethylene dodecanoamide)/polyaniline composites. J. Appl. Polym. Sci. 2019, 136, 47041.

    Article  Google Scholar 

  29. Li, W.; Wang, L.; Dong, X.; Wang, D. A facile strategy to fabricate antistatic polyamide 1012/multi-walled carbon nanotube pipes for fuel delivery applications. Polymers 2020, 12, 1797.

    Article  CAS  Google Scholar 

  30. Chen, X.; Yang, T.; Lei, J.; Liu, X.; Zhao, Z.; Xue, Z.; Li, W.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission and luminescence regulation by molecular arrangement of nonaromatic polyamide-6. J. Phys. Chem. B 2020, 124, 8928–8936.

    Article  CAS  Google Scholar 

  31. Wang, Q.; Shao, Z. Z.; Yu, T. Y. The synthesis and characterization of polyethylene succinamide (polyamide 24). Polym. Bull. 1996, 36, 659–665.

    Article  CAS  Google Scholar 

  32. Porfyris, A.; Vouyiouka, S.; Papaspyrides, C.; Rulkens, R.; Grolman, E.; Poel, G. V. Investigating alternative routes for semi-aromatic polyamide salt preparation: the case of tetramethylenediammonium terephthalate. J. Appl. Polym. Sci. 2016, 133, 42987.

    Article  Google Scholar 

  33. Boussia, A. C.; Vouyiouka, S. N.; Porfiris, A. D.; Papaspyrides, C. D. Long-aliphatic-segment polyamides: salt preparation and subsequent anhydrous polymerization. Macromol. Mater. Eng. 2010, 295, 812–821.

    Article  CAS  Google Scholar 

  34. Ito, Y.; Higashihara, T.; Ueda, M. Synthesis of aliphatic polyamide dendrimers based on facile convergent method. Macromolecules 2012, 45, 4175–4183.

    Article  CAS  Google Scholar 

  35. Zhang, X.; Jiang, X.; Zhu, X.; Kong, X. Z. Effective enhancement of Cu ions adsorption on porous polyurea adsorbent by carboxylic modification of its terminal amine groups. React. Funct. Polym. 2020, 147, 104450.

    Article  CAS  Google Scholar 

  36. Clark, DT.; Peeling, J.; Colling, L. An experimental and theoretical investigation of the core level spectra of a series of amino acids, dipeptides and polypeptides. Biochim Biophys Acta. 1976, 453, 533–545.

    Article  CAS  Google Scholar 

  37. Liu, C.; Zhang, J.; Wang, W.; Guo, Y.; Xiao, K. Effects of gamma-ray irradiation on separation and mechanical properties of polyamide reverse osmosis membrane. J. Membr. Sci. 2020, 611, 118354.

    Article  CAS  Google Scholar 

  38. Qin, Y.; Yu, S.; Zhao, Q.; Kang, G.; Yu, H.; Jin, Y.; Cao, Y. New insights into tailoring polyamide structure for fabricating highly permeable reverse osmosis membranes. Desalination 2021, 499, 114840.

    Article  CAS  Google Scholar 

  39. Meng, H.; Sui, G. X.; Fang P. F.; Yang R. Effects of acid- and diamine-modified mwnts on the mechanical properties and crystallization behavior of polyamide 6. Polymer 2008, 49, 610–620.

    Article  CAS  Google Scholar 

  40. Bellinger, M. A.; Waddon, A. J.; Atkins, E. D. T.; MacKnight, W. J. Structure and morphology of nylon 4 chain-folded lamellar crystals. Macromolecules 1994, 27, 2130–2135.

    Article  CAS  Google Scholar 

  41. Li, Y.; Goddard III W. A. Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 2002, 35, 8440–8455.

    Article  CAS  Google Scholar 

  42. Sun, H.; Wei, Y.; Kong, X. Z.; Jiang, X. Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization. Polymer 2021, 216, 123432.

    Article  CAS  Google Scholar 

  43. Orgueira, H. A.; Erra-Balsells, R.; Nonami, H.; Varela, O. Synthesis of chiral polyhydroxy polyamides having chains of defined regio and stereoregularity. Macromolecules 2001, 34, 687–695.

    Article  CAS  Google Scholar 

  44. Li, X.; He, Y.; Dong, X.; Ren, X.; Gao, H.; Hu, W. Effects of hydrogen-bonding density on polyamide crystallization kinetics. Polymer 2020, 189, 122165.

    Article  CAS  Google Scholar 

  45. Pohl, M.; Pieck, A.; Hanewinkel, C.; Otto, A. Raman study of formic acid and surface formate adsorbed on cold-deposited copper films. J. Raman Spectrosc. 1996, 27, 805–809.

    Article  CAS  Google Scholar 

  46. Wang, P.; Liu, C.; Tang, W.; Ren, S.; Chen, Z.; Guo, Y.; Rostamian, R.; Zhao, S.; Jian, L.; Liu, S.; Li, S. Molecular glue strategy: large-scale conversion of clustering-induced emission luminogen to carbon dots. ACS Appl. Mater. Interfaces 2019, 11, 19301–19307.

    Article  CAS  Google Scholar 

  47. Jin, T.; Yin, H.; Easton, C. D.; Seeber, A.; Hao, X.; Huang, C.; Zeng, R. New Strategy of improving the dispersibility of acrylamide-functionalized graphene oxide in aqueous solution by RAFT copolymerization of acrylamide and acrylic acid. Eur. Polym. J. 2019, 117, 148–158.

    Article  CAS  Google Scholar 

  48. Shang, C.; Wei, N.; Zhuo, H.; Shao, Y.; Zhang, Q.; Zhang, Z.; Wang, H. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J. Mater. Chem. C 2017, 5, 8082–8090.

    Article  CAS  Google Scholar 

  49. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 2013, 125, 4045–4049.

    Article  Google Scholar 

  50. Gan, Z.; Xiong, S.; Wu, X.; Xu, T.; Zhu, X.; Gan, X.; Guo, J.; Shen, J.; Sun, L.; Chu, P. K. Mechanism of photoluminescence from chemically derived graphene oxide: role of chemical reduction. Adv. Opt. Mater. 2013, 1, 926–932.

    Article  Google Scholar 

  51. Gan, Z.; Wu, X.; Hao, Y. The Mechanism of blue photoluminescence from carbon nanodots. CrystEngComm 2014, 16, 4981–4986.

    Article  CAS  Google Scholar 

  52. Fan, J.; Hu, M.; Zhan, P.; Peng, X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem. Soc. Rev. 2013, 42, 29–43.

    Article  CAS  Google Scholar 

  53. Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. FRET-based small-molecule fluorescent probes: rational design and bioimaging Applications. Acc. Chem. Res. 2013, 46, 1462–1473.

    Article  CAS  Google Scholar 

  54. Shcherbakova, D. M.; Hink, M. A.; Joosen, L.; Gadella, T. W. J.; Verkhusha, V. V. An orange fluorescent protein with a large stokes shift for single-excitation multicolor FCCS and FRET imaging. J. Am. Chem. Soc. 2012, 134, 7913–7923.

    Article  CAS  Google Scholar 

  55. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  Google Scholar 

  56. Bateman, A. P.; Nizkorodov, S. A.; Laskin J.; Laskin, A. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12199–12212.

    Article  CAS  Google Scholar 

  57. Choi, J.; Kim, H. J.; Lee, J. W. Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem. 2011, 124, 520–523.

    Article  Google Scholar 

  58. Yu, G.; Chen, X.; Mao S.; Liu, M.; Du, Y. Hydrophobic terminal group of surfactant initiating micellization as revealed by 1H NMR spectroscopy. Chin. Chem. Lett. 2017, 28, 1413–1416.

    Article  CAS  Google Scholar 

  59. Feng, Y.; Taraban, M. B.; Yu, Y. B. Water proton NMR—a sensitive probe for solute association. Chem. Commun. 2015, 51, 6804–6807.

    Article  CAS  Google Scholar 

  60. Lin, X.; Liu, J.; Tian, M.; Bai, Y.; Bao, Y.; Shu, T.; Su, L.; Zhang, X. An aggregation-induced phosphorescence-active “turn-off” nanosensor based on ferric-specific quenching of luminescent and water-soluble Au(I)-cysteine nanocomplexes. Anal. Chem. 2020, 42, 6785–6791.

    Article  Google Scholar 

  61. Long, G. L.; Winefordner, J. D. Limit of detection: a closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712–724.

    Google Scholar 

  62. Wang, Q.; Niu, H.; Mao, C.; Song, J.; Zhang, S. Facile synthesis of trilaminar core-shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochim. Acta 2014, 127, 349–354.

    Article  CAS  Google Scholar 

  63. Zhu, H.; Tang, W.; Ma, Y.; Wang, Y.; Tan, H.; Li, Y. Preyssler-type polyoxometalate-based crystalline materials for the electrochemical detection of H2O2. CrystEngComm 2021, 23, 2071–2080.

    Article  CAS  Google Scholar 

  64. Dumore, N. S.; Mukhopadhyay, M. Sensitivity enhanced senps-FTO electrochemical sensor for hydrogen peroxide detection. J. Electroanal. Chem. 2020, 878, 114544.

    Article  CAS  Google Scholar 

  65. Chen, X.; Zeng, W.; Yang, X.; Lu, X.; Qu, J.; Liu, R. Thiourea based conjugated polymer fluorescent chemosensor for Cu+ and its use for the detection of hydrogen peroxide and glucose. Chinese J. Polym. Sci. 2016, 34, 324–331.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Shandong Province (Nos. ZR2019MB031 and ZR2021MB112) and Science and Technology Bureau of Jinan city (No.2021GXRC105), Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zheng Kong.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2826_MOESM1_ESM.pdf

Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, Q., Li, B. et al. Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption. Chin J Polym Sci 41, 129–142 (2023). https://doi.org/10.1007/s10118-022-2826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2826-x

Keywords

Navigation