Skip to main content
Log in

Structure and Morphology of Poly(ε-caprolactone) Heterogeneous Shish-Kebab Structure Induced by Poly(lactic acid) Nanofibers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In recent years, the hybrid shish-kebab structure with excellent physical properties and functionalities has attracted much attention because it provides a way of blending nanofibers with different properties into polymer matrix in a regular arrangement. It is often not easy to induce the formation of the hierarchically ordered structure for the semi-crystalline polymer in heterogeneous shish-kebab structure. A poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) heterogeneous shish-kebab structure, i.e., the PCL crystals periodically crystallized onto PLA nanofibers, was successfully created and the interfacial crystal morphology of the PLA/PCL heterogeneous shish-kebab structure was observed using scanning electron microscopy and atomic force microscopy. NaOH aqueous solution was applied to modify the surface of the PLA nanofibers to produce adsorption sites and carboxyl groups. The total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD) results demonstrated that the formation of the heterogeneous shish-kebab structure was mainly due to the hydrogen bonding interaction between the kebab and shish interface, and the growth process of the kebab crystals also promoted the crystallization of the shish fibers. This heterogeneous nanostructure of biodegradable polymers will have great applications in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartnikowski, M.; Dargaville, T. R.; Ivanovski, S.; Hutmacher, D. W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20.

    Article  CAS  Google Scholar 

  2. Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: the future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127.

    Article  CAS  Google Scholar 

  3. Carosio, F.; Colonna, S.; Fina, A.; Rydzek, G.; Hemmerlé, J.; Jierry, L.; Schaaf, P.; Boulmedais, F. Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem. Mater. 2014, 26, 5459–5466.

    Article  CAS  Google Scholar 

  4. Broz, M. Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 2003, 24, 4181–4190.

    Article  CAS  PubMed  Google Scholar 

  5. Yao, Q.; Cosme, J. G. L.; Xu, T.; Miszuk, J. M.; Picciani, P. H. S.; Fong, H.; Sun, H. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017, 115, 115–127.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, J. J.; Lee, D. T.; Yaga, R. W.; Hall, M. G.; Barton, H. F.; Woodward, I. R.; Oldham, C. J.; Walls, H. J.; Peterson, G. W.; Parsons, G. N. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angew. Chem. Int. Ed. 2016, 55, 13224–13228.

    Article  CAS  Google Scholar 

  7. Bu, L.; Pentzer, E.; Bokel, F. A.; Emrick, T.; Hayward, R. C. Growth of polythiophene/perylene tetracarboxydiimide donor/acceptor shish-kebab nanostructures by coupled crystal modification. ACS Nano 2012, 6, 10924–10929.

    Article  CAS  PubMed  Google Scholar 

  8. Hu, J.; Liu, A.; Jin, H.; Ma, D.; Yin, D.; Ling, P.; Wang, S.; Lin, Z.; Wang, J. A Versatile strategy for shish-kebab-like multi-heterostructured chalcogenides and enhanced photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 11004–11010.

    Article  CAS  PubMed  Google Scholar 

  9. Li, C. Y.; Li, L.; Cai, W.; Kodjie, S. L.; Tenneti, K. K. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv. Mater. 2005, 17, 1198–1202.

    Article  CAS  Google Scholar 

  10. Van de Voorde, K. M.; Pokorski, J. K.; Korley, L. T. J. Exploring morphological effects on the mechanics of blended poly(lactic acid)/poly(ε-caprolactone) extruded fibers fabricated using multilayer coextrusion. Macromolecules 2020, 53, 5047–5055.

    Article  CAS  Google Scholar 

  11. Kakroodi, A. R.; Kazemi, Y.; Rodrigue, D.; Park, C. B. Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chem. Eng. J. 2018, 351, 976–984.

    Article  CAS  Google Scholar 

  12. Li, L.; Li, C. Y.; Ni, C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 1692–1699.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, W.; Markwart, J. C.; Briseno, A. L.; Hayward, R. C.; Markwart, J. C. Orthogonal ambipolar semiconductor nanostructures for complementary logic gates. ACS Nano 2016, 10, 8610–9.

    Article  CAS  PubMed  Google Scholar 

  14. Xiong, R.; Lu, C.; Xiong, R.; Zhang, S.; Kim, S.; Korolovych, V. F.; Ma, R.; Tsukruk, V. V.; Kim, H. S.; Yingling, Y. G. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 2017, 11, 12008–12019.

    Article  CAS  PubMed  Google Scholar 

  15. Jing, X.; Mi, H. Y.; Wang, X. C.; Peng, X. F.; Turng, L. S. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X.; Wang, W. D.; Cheng, S.; Dong, B.; Li, C. Y. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano 2013, 7, 8251–8257.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, L.; Shang, Y.; Li, C.; Jiao, Y.; Qiu, Y.; Wang, C.; Wu, Y.; Zhang, Q.; Wang, F.; Yang, Z.; Wang, L. Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration. Adv. Healthc. Mater. 2021, 10, 2170106.

    Article  Google Scholar 

  18. Laird, E. D.; Wang, W.; Cheng, S.; Li, B.; Presser, V.; Dyatkin, B.; Gogotsi, Y.; Li, C. Y. Polymer single crystal-decorated superhydrophobic buckypaper with controlled wetting and conductivity. ACS Nano 2012, 6, 1204–1213.

    Article  CAS  PubMed  Google Scholar 

  19. Arras, M. M. L.; Jana, R.; Muehlstaedt, M.; Maenz, S.; Andrews, J.; Su, Z.; Grasl, C.; Jandt, K. D. In situ formation of nanohybrid shish-kebabs during electrospinning for the creation of hierarchical shish-kebab structures. Macromolecules 2016, 49, 3550–3558.

    Article  CAS  Google Scholar 

  20. Xie, Q.; Han, L.; Shan, G.; Bao, Y.; Pan, P. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain. Chem. Eng. 2016, 4, 2680–2688.

    Article  CAS  Google Scholar 

  21. Wang, X.; Salick, M. R.; Wang, X.; Cordie, T.; Han, W.; Peng, Y.; Li, Q.; Turng, L. S. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromolecules 2013, 14, 3557–3569.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X.; Dong, B.; Wang, B.; Shah, R.; Li, C. Y. Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules 2010, 43, 9918–9927.

    Article  CAS  Google Scholar 

  23. Gleeson, S. E.; Kim, S.; Qian, Q.; Yu, T.; Marcolongo, M.; Li, C. Y. Biomimetic mineralization of hierarchical nanofiber shish-kebabs in a concentrated apatite-forming solution. ACS Appl. Bio Mater. 2021, 4, 571–580.

    Article  CAS  Google Scholar 

  24. Li, X.; Gao, Y.; Harniman, R.; Winnik, M.; Manners, I. Hierarchical assembly of cylindrical block comicelles mediated by spatially confined hydrogen-bonding interactions. J. Am. Chem. Soc. 2016, 138, 12902–12912.

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee, T.; Sani, M.; Kao, N.; Gupta, R. K.; Quazi, N.; Bhattacharya, S. Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem. Eng. Sci. 2013, 101, 655–662.

    Article  CAS  Google Scholar 

  26. Jiang, Z.; Wang, Y.; Fu, L.; Whiteside, B.; Wyborn, J.; Norris, K.; Wu, Z.; Coates, P.; Men, Y. Tensile deformation of oriented poly(ε-caprolactone) and its miscible blends with poly(vinyl methyl ether). Macromolecules 2013, 46, 6981–6990.

    Article  CAS  Google Scholar 

  27. Guo, X.; Wang, X.; Li, X.; Jiang, Y. C.; Han, S.; Ma, L.; Guo, H.; Wang, Z.; Li, Q. Endothelial cell migration on poly(ε-caprolactone) nanofibers coated with a nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromolecules 2020, 21, 1202–1213.

    Article  CAS  PubMed  Google Scholar 

  28. Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237.

    Article  CAS  Google Scholar 

  29. Xu, H.; Xu, Y.; Pang, X.; He, Y.; Jung, J.; Xia, H.; Lin, Z. A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Sci. Adv. 2015, 1, e1500025.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu, X.; Wang, H.; Jiang, L.; Wang, X.; Payne, S. A.; Zhu, J. Y.; Li, R. Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 2014, 47, 3409–3416.

    Article  CAS  Google Scholar 

  31. Zhang, J. M.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Infrared spectroscopic study of CH3⋯O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 2005, 38, 1822–1828.

    Article  CAS  Google Scholar 

  32. Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Cao, A.; Yazawa, K.; Inoue, Y. Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Macromolecules 2012, 45, 189–197.

    Article  CAS  Google Scholar 

  33. Semba, T.; Kitagawa, K.; Ishiaku, U. S.; Hamada, H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825.

    Article  CAS  Google Scholar 

  34. Shukor, F.; Hassan, A.; Saiful Islam, M.; Mokhtar, M.; Hasan, M. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater. Design 2014, 54, 425–429.

    Article  CAS  Google Scholar 

  35. Yousif, B. F.; Shalwan, A.; Chin, C. W.; Ming, K. C. Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Design 2012, 40, 378–385.

    Article  CAS  Google Scholar 

  36. Yang, X. S.; Zhao, K.; Chen, G. Q. Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials 2002, 23, 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  37. Ning, N.; Fu, S.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci. 2012, 37, 1425–1455.

    Article  CAS  Google Scholar 

  38. Li, L. Y.; Yang, Y.; Yang, G. L.; Chen, X. M.; Hsiao, B. S.; Chu, B.; Spanier, J. E.; Li, C. Y. Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. Nano Lett. 2006, 6, 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  39. Yan, C.; Li, H.; Zhang, J.; Ozaki, Y.; Shen, D.; Yan, D.; Shi, A. C.; Yan, S. Surface-induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate: epitaxy and soft epitaxy. Macromolecules 2006, 39, 8041–8048.

    Article  CAS  Google Scholar 

  40. Shen, B.; Liang, Y.; Zhang, C.; Han, C. C. Shear-induced crystallization at polymer-substrate interface: the slippage hypothesis. Macromolecules 2011, 44, 6919–6927.

    Article  CAS  Google Scholar 

  41. Sun, H.; Wang, X.; Zhang, L. Preparation and characterization of poly(lactic acid) nanocomposites reinforced with lignin-containing cellulose nanofibrils. Polymer 2014, 38, 464–470.

    CAS  Google Scholar 

  42. Tsai, C. C.; Gan, Z.; Chen, T.; Kuo, S. W. Competitive hydrogen bonding interactions influence the secondary and hierarchical self-assembled structures of polypeptide-based triblock copolymers. Macromolecules 2018, 51, 3017–3029.

    Article  CAS  Google Scholar 

  43. Zhang, J. M.; Tsuji, H.; Noda, I.; Ozaki, Y. Structural changes and crystallization dynamics of poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 2004, 37, 6433–6439.

    Article  CAS  Google Scholar 

  44. Na, Y. H.; He, Y.; Shuai, X.; Kikkawa, Y.; Doi, Y.; Inoue, Y. Compatibilization Effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules 2002, 3, 1179–1186.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, C.; Zhai, T.; Turng, L. S.; Dan, Y. Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by l-lactide/caprolactone copolymer. Ind. Eng. Chem. Res. 2015, 54, 9505–9511.

    Article  CAS  Google Scholar 

  46. Ding, W.; Jahani, D.; Chang, E.; Alemdar, A.; Park, C. B.; Sain, M. Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos. Part A-Appl. S 2016, 83, 130–139.

    Article  CAS  Google Scholar 

  47. Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Deng, H.; Wang, K.; Chen, F.; Fu, Q. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules 2014, 15, 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, H.; Zhong, G.-J.; Fu, Q.; Lei, J.; Jiang, W.; Hsiao, B. S.; Li, Z. M. Formation of shish-kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field. ACS Appl. Mater. Interfaces 2012, 4, 6774–6784.

    Article  CAS  PubMed  Google Scholar 

  49. Gazzano, M.; Gualandi, C.; Zucchelli, A.; Sui, T.; Korsunsky, A. M.; Reinhard, C.; Focarete, M. L. Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer 2015, 63, 154–163.

    Article  CAS  Google Scholar 

  50. Yang, L.; Somani, R. H.; Sics, I.; Hsiao, B. S.; Kolb, R.; Fruitwala, H.; Ong, C. Shear-induced crystallization precursor studies in model polyethylene blends by in-situ rheo-SAXS and rheo-WAXD. Macromolecules 2004, 37, 4845–4859.

    Article  CAS  Google Scholar 

  51. Xie, X. L.; Li, Y.; Xu, J. Z.; Yan, Z.; Zhong, G. J.; Li, Z. M. Largely enhanced mechanical performance of poly(butylene succinate) multiple system via shear stress-induced orientation of the hierarchical structure. J. Mater. Chem. A 2018, 6, 13373–13385.

    Article  CAS  Google Scholar 

  52. Gu, X.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors affiliated with the Zhengzhou University acknowledge the research facility, the financial support from the National Center for International Joint Research of Micro-Nano Molding Technology in China, the International Science & Technology Cooperation Program of China (No. 2015DFA30550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2747_MOESM1_ESM.pdf

Structure and Morphology of Poly(ε-caprolactone) Heterogeneous Shish-Kebab Structure Induced by Poly(lactic acid) Nanofibers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, ZH., Wang, DF., Xu, YY. et al. Structure and Morphology of Poly(ε-caprolactone) Heterogeneous Shish-Kebab Structure Induced by Poly(lactic acid) Nanofibers. Chin J Polym Sci 40, 1223–1232 (2022). https://doi.org/10.1007/s10118-022-2747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2747-8

Keywords

Navigation