Skip to main content
Log in

The Shackling Effect in Cyclic Azobenzene Liquid Crystal

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We demonstrate here a novel method for the design of liquid crystals (LCs) via the cyclization of mesogens by flexible chains. For two azobenzene-4,4′-dicarboxylate derivatives, the cyclic dimer, cyclic bis(tetraethylene glycol azobenzene-4,4′-dicarboxylate) (CBTAD), shows LC properties with smectic A phase, while its linear counterpart, bis(2-(2′-hydroxyethyloxy)ethyl azobenzene-4,4′-dicarboxylate (BHAD), has no LC phase. The difference is ascribed to the shackling effect from the cyclic topology, which leads to the much smaller entropy change during phase transitions and increases the isotropic temperature greatly for cyclics. In addition, the trans-to-cis isomerization of azobenzene groups under UV-light is also limited in CBTAD. With the reversible isomerization of azobenzene groups, CBTAD showed interesting isothermal phase transition behaviors, where the LC phase disappeared upon photoirradiation of 365 nm UV-light, and recovered when the UV-light was off. Combined with the smectic LC nature, a novel UV-light tuned visible light regulator was designed, by simply placing CBTAD in two glass plates. The scattered phase of smectic LC was utilized as the “OFF” state for light passage, while the UV-light induced isotropic phase was utilized as the “ON” state. The shackling effect outlined here should be applicable for the design of cyclic LC oligomers/polymers with special properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rau, H.; Lueddecke, E. On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J. Am. Chem. Soc. 1982, 104, 1616–1620.

    Article  CAS  Google Scholar 

  2. Ikeda, T.; Horiuchi, S.; Karanjit, D. B.; Kurihara, S.; Tazuke, S. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors. Macromolecules 1990, 23, 42–48.

    Article  CAS  Google Scholar 

  3. Ikeda, T.; Kurihara, S.; Karanjit, D. B.; Tazuke, S. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic cyanobiphenyl side chains. Macromolecules 1990, 23, 3938–3943.

    Article  CAS  Google Scholar 

  4. Ikeda, T.; Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 1995, 268, 1873–1875.

    Article  CAS  PubMed  Google Scholar 

  5. Tsutsumi, O.; Shiono, T.; Ikeda, T.; Galli, G. Photochemical phase transition behavior of nematic liquid crystals with azobenzene moieties as both mesogens and photosensitive chromophores. J. Phys. Chem. B 1997, 101, 1332–1337.

    Article  CAS  Google Scholar 

  6. Hsu, C.; Xu, Z.; Wang, X. Holographic recording and hierarchical surface patterning on periodic submicrometer pillar arrays of azo molecular glass via polarized light irradiation. Adv. Funct. Mater. 2018, 28, 1802506.

    Article  CAS  Google Scholar 

  7. Xu, W. C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 2019, 58, 9712–9740.

    Article  CAS  Google Scholar 

  8. Tian, J.; Fu, L.; Liu, Z.; Geng, H.; Sun, Y.; Lin, G.; Zhang, X.; Zhang, G.; Zhang, D. Optically tunable field effect transistors with conjugated polymer entailing azobenzene groups in the side chains. Adv. Funct. Mater. 2019, 29, 1807176.

    Article  CAS  Google Scholar 

  9. Pang, X.; Lv, J. A.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 2019, 31, 1904224.

    Article  CAS  Google Scholar 

  10. Yu, J. K.; Bannwarth, C.; Liang, R.; Hohenstein, E. G.; Martínez, T. J. Nonadiabatic dynamics simulation of the wavelength-dependent photochemistry of azobenzene excited to the nπ* and ππ* excited states. J. Am. Chem. Soc. 2020, 142, 20680–20690.

    Article  CAS  PubMed  Google Scholar 

  11. Arai, K.; Kawabata, Y. Changes in the sol-gel transformation behavior of azobenzene moiety-containing methylcellulose irradiated with UV light. Macromol. Rapid Commun. 1995, 16, 875–880.

    Article  CAS  Google Scholar 

  12. Kadota, S.; Aoki, K.; Nagano, S.; Seki, T. Phootconntrolled microphase separation of block copolymers in two dimensions. J. Am. Chem. Soc. 2005, 127, 8266–8267.

    Article  CAS  PubMed  Google Scholar 

  13. Hoshino, M.; Uchida, E.; Norikane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi, S. I.; Koshihara, S. Y. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 2014, 136, 9158–9164.

    Article  CAS  PubMed  Google Scholar 

  14. Lu, X.; Zhang, H.; Fei, G.; Yu, B.; Tong, X.; Xia, H.; Zhao, Y. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 2018, 30, 1706597.

    Article  CAS  Google Scholar 

  15. Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1900067.

    Article  CAS  Google Scholar 

  16. Sasaki, H.; Abe, K.; Sagisaka, M.; Yoshizawa, A. Photo-induced guest-host interactions produce chiral conglomerates accompanying grain boundaries in a smectic phase. J. Mater. Chem. C 2021, 9, 12928–12937.

    Article  CAS  Google Scholar 

  17. Lu, X.; Guo, S.; Tong, X.; Xia, H.; Zhao, Y. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 2017, 29, 1606467.

    Article  CAS  Google Scholar 

  18. Han, S. Q.; Chen, Y. Y.; Xu, B.; Wei, J.; Yu, Y. L. An azoester-containing photoresponsive linear liquid crystal polymer with good mesophase stability. Chinese J. Polym. Sci. 2020, 38, 806–813.

    Article  CAS  Google Scholar 

  19. Cheng, H. B.; Zhang, S.; Qi, J.; Liang, X. J.; Yoon, J. Advances in application of azobenzene as a trigger in biomedicine: molecular design and spontaneous assembly. Adv. Mater. 2021, 33, 2007290.

    Article  CAS  Google Scholar 

  20. Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 2003, 15, 201.

    Article  CAS  Google Scholar 

  21. Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. J. Mater. Chem. 2010, 20, 5202–5209.

    Article  CAS  Google Scholar 

  22. Hsu, C.; Xu, Z.; Wang, X. Symmetry-breaking response of azo molecular glass microspheres to interfering circularly polarized light: from shape manipulation to 3D patterning. Adv. Funct. Mater. 2019, 29, 1806703.

    Article  CAS  Google Scholar 

  23. Hacioglu, S. O. Copolymerization of azobenzene-bearing monomer and 3,4-ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device applications. Chinese J. Polym. Sci. 2020, 38, 109–117.

    Article  CAS  Google Scholar 

  24. Yang, P. C.; Li, C. Y.; Wu, H.; Chiang, J. C. Synthesis and mesomorphic properties of photoresponsive azobenzene-containing chromophores with various terminal groups. J. Taiwan Inst. Chem. Eng. 2012, 43, 480–490.

    Article  CAS  Google Scholar 

  25. He, L. H.; Wang, G. M.; Tang, Q.; Fu, X. K.; Gong, C. B. Synthesis and characterization of novel electrochromic and photoresponsive materials based on azobenzene-4,4′-dicarboxylic acid dialkyl ester. J. Mater. Chem. C 2014, 2, 8162–8169.

    Article  CAS  Google Scholar 

  26. Hadziioannou, G.; Cotts, P. M.; ten Brinke, G.; Han, C. C.; Lutz, P.; Strazielle, C.; Rempp, P.; Kovacs, A. J. Thermodynamic and hydrodynamic properties of dilute solutions of cyclic and linear polystyrenes. Macromolecules 1987, 20, 493–497.

    Article  CAS  Google Scholar 

  27. McKenna, G. B.; Hadziioannou, G.; Lutz, P.; Hild, G.; Strazielle, C.; Straupe, C.; Rempp, P.; Kovacs, A. J. Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules 1987, 20, 498–512.

    Article  CAS  Google Scholar 

  28. Orrah, D. J.; Semlyen, J. A.; Ross-Murphy, S. B. Studies of cyclic and linear poly(dimethylsiloxanes): 28. Viscosities and densities of ring and chain poly(dimethylsiloxane) blends. Polymer 1988, 29, 1455–1458.

    Article  CAS  Google Scholar 

  29. Gao, L.; Oh, J.; Tu, Y.; Chang, T.; Li, C. Y. Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer 2019, 170, 198–203.

    Article  CAS  Google Scholar 

  30. Gao, L.; Ji, Z.; Zhao, Y.; Cai, Y.; Li, X.; Tu, Y. Synthesis and solution self-assembly properties of cyclic rod-coil diblock copolymers. ACS Macro Lett. 2019, 8, 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  31. Haque, F. M.; Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433–444.

    Article  CAS  PubMed  Google Scholar 

  32. Ono, R.; Atarashi, H.; Yamazaki, S.; Kimura, K. Molecular weight dependence of the growth rate of spherulite of cyclic poly(ε-caprolactone) polymerized by ring expansion reaction. Polymer 2020, 194, 122403.

    Article  CAS  Google Scholar 

  33. Koo, M. B.; Lee, S. W.; Lee, J. M.; Kim, K. T. Iterative convergent synthesis of large cyclic polymers and block copolymers with discrete molecular weights. J. Am. Chem. Soc. 2020, 142, 14028–14032.

    Article  CAS  PubMed  Google Scholar 

  34. Golba, B.; Benetti, E. M.; De Geest, B. G. Biomaterials applications of cyclic polymers. Biomaterials 2021, 267, 120468.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y.; Gao, L.; Lu, H.; Li, X.; Tu, Y.; Chang, T. The non-free draining effect for small cyclics in solution. Polymer 2021, 213, 123202.

    Article  CAS  Google Scholar 

  36. Xu, J.; Wen, L.; Zhang, F.; Lin, W.; Zhang, L. Self-assembly of cyclic grafted copolymers with rigid rings and their potential as drug nanocarriers. J. Colloid Interf. Sci. 2021, 597, 114–125.

    Article  CAS  Google Scholar 

  37. Xue, X.; Chen, Y.; Li, Y.; Liang, K.; Huang, W.; Yang, H.; Jiang, L.; Jiang, Q.; Chen, F.; Jiang, T.; Lin, B.; Jiang, B.; Pu, H. Remarkable untangled dynamics behavior of multicyclic branched polystyrenes. Chem. Commun. 2021, 57, 399–402.

    Article  CAS  Google Scholar 

  38. Jiang, Q.; Wong, S.; Klausen, R. S. Effect of polycyclosilane microstructure on thermal properties. Polym. Chem. 2021, 12, 4785–4794.

    Article  CAS  Google Scholar 

  39. Roovers, J. The melt properties of ring polystyrenes. Macromolecules 1985, 18, 1359–1361.

    Article  CAS  Google Scholar 

  40. Qiu, X. P.; Tanaka, F.; Winnik, F. M. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution. Macromolecules 2007, 40, 7069–7071.

    Article  CAS  Google Scholar 

  41. An, X.; Tang, Q.; Zhu, W.; Zhang, K.; Zhao, Y. Synthesis, thermal properties, and thermoresponsive behaviors of cyclic poly(2-(dimethylamino)ethyl methacrylate)s. Macromol. Rapid Commun. 2016, 37, 980–986.

    Article  CAS  PubMed  Google Scholar 

  42. Brunelle, D. J.; Bradt, J. E.; Serth-Guzzo, J.; Takekoshi, T.; Evans, T. L.; Pearce, E. J.; Wilson, P. R. Semicrystalline polymers via ring-opening polymerization: preparation and polymerization of alkylene phthalate cyclic oligomers. Macromolecules 1998, 31, 4782–4790.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Z.; Gu, J.; Qi, S.; Wu, D.; Gao, L.; Chen, Z.; Guo, J.; Li, X.; Wang, Y.; Yang, X.; Tu, Y. Shackling effect induced property differences in metallo-supramolecular polymers. J. Am. Chem. Soc. 2017, 139, 14364–14367.

    Article  CAS  PubMed  Google Scholar 

  44. Chikaoka, S.; Takata, T.; Endo, T. New aspects of cationic polymerization of spiroorthoester: cationic single ring-opening polymerization and equilibrium polymerization. Macromolecules 1991, 24, 6557–6562.

    Article  CAS  Google Scholar 

  45. Matsuo, J.; Aoki, K.; Sanda, F.; Endo, T. Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates. Macromolecules 1998, 31, 4432–4438.

    Article  CAS  Google Scholar 

  46. He, C.; Zhu, X.; Li, X. H.; Yang, X. M.; Tu, Y. F. Thermodynamics of aromatic cyclic ester polymerization in bulk. Chinese J. Polym. Sci. 2019, 37, 89–93.

    Article  CAS  Google Scholar 

  47. Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Handbook of liquid crystal. Wiley-VCH: Weinheim, 1998.

    Book  Google Scholar 

  48. Tu, Y.; Gu, Y.; Van Horn, R. M.; Mitrokhin, M.; Harris, F. W.; Cheng, S. Z. D. A synthetic approach towards micron-sized smectic liquid crystal capsules via the diffusion controlled swelling method. Polym. Chem. 2015, 6, 2551–2559.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Miss Wen-Jing Yao and Prof. Tao Liu at Soochow University for their kind helps on the estimation of relative light intensity during the isothermal phase transitions. The financial support from the National Natural Science Foundation of China (Nos. 21774090 and 22071167), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Feng Tu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., He, C., Yang, ZF. et al. The Shackling Effect in Cyclic Azobenzene Liquid Crystal. Chin J Polym Sci 40, 584–592 (2022). https://doi.org/10.1007/s10118-022-2675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2675-7

Keywords

Navigation