Skip to main content
Log in

Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs (o-GNPs/PLA) via fused deposition modeling (FDM) 3D printing technology. Further combinations of o-GNPs/PLA with Ti3C2Tx films prepared by vacuum-assisted filtration were carried out by “layer-by-layer stacking-hot pressing” to be the thermally conductive Ti3C2Tx/(o-GNPs/PLA) composites with superior electromagnetic interference shielding effectiveness (EMI SE). When the content of GNPs was 18.60 wt% and 4 layers of Ti3C2Tx (6.98 wt%) films were embedded, the in-plane thermal conductivity coefficient (λ||) and EMI SE (EMI SE||) values of the thermally conductive Ti3C2Tx/(o-GNPs/PLA) composites significantly increased to 3.44 W·m–1·K–1 and 65 dB (3.00 mm), increased by 1223.1% and 2066.7%, respectively, compared with λ|| (0.26 W·m–1·K–1 ) and EMI SE|| (3 dB) of neat PLA matrix. This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, S.; Song, N.; Shi, L.; Ding, P. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds. ACS Sustain. Chem. Eng. 2020, 8, 6363–6370.

    Article  CAS  Google Scholar 

  2. Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q.; Sun, R.; Yu, J.; Jiang, N.; Chen, D.; Wong, C. P.; Xiang, R.; Maruyama, S.; Lin, C. T. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C. T.; Angaiahd, S.; Guo, Z. H. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733.

    Article  CAS  Google Scholar 

  4. Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O.; Koo, C. M. Electromagnetic interference shielding: electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 2070064.

    Article  Google Scholar 

  5. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  6. Jia, Y.; Ajayi, T. D.; Wahls, B. H.; Ramakrishnan, K. R.; Ekkad, S.; Xu, C. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites. ACS Appl. Mater. Interfaces. 2020, 12, 58005–58017.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J.; Zhao, X.; Wu, W.; Ji, X.; Lu, Y.; Zhang, L. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

    Article  CAS  Google Scholar 

  8. Vu, M. C.; Choi, W. K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, M. A.; Kim, S. R. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 23388–23398.

    Article  CAS  PubMed  Google Scholar 

  9. Song, J. N.; Peng, Z. L.; Zhang, Y. Enhancement of thermal conductivity and mechanical properties of silicone rubber composites by using acrylate grafted siloxane copolymers. Chem. Eng. J. 2020, 391, 123476.

    Article  CAS  Google Scholar 

  10. Lule, Z.; Kim, J. Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride. Compos. Part A-Appl. S 2019, 124, 105506.

    Article  CAS  Google Scholar 

  11. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities. excellent mechanical robustness and flexibility. and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521.

    Article  CAS  Google Scholar 

  13. Wu, F. P.; Lin, Z. Q.; Xu, T.; Chen, J. Y.; Huang, G. S.; Wu, H. J.; Zhou, X. Q.; Wang, D. J.; Liu, Y. F.; Hu, J. Q. Development and thermal properties of a novel sodium acetate trihydrate-acetamide-micron/nano aluminum nitride composite phase change material. Mater. Design 2020, 196, 109113.

    Article  CAS  Google Scholar 

  14. Lee, W.; Kim, J. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride. Compos. Sci. Technol. 2020, 200, 108424.

    Article  CAS  Google Scholar 

  15. Cheng, S. S.; Duan, X. Y.; Liu, X. Q.; Zhang, Z. Y.; An, D.; Zhao, G. Z.; Liu, Y. Q. Achieving significant thermal conductivity improvement via constructing vertically arranged and covalently bonded silicon carbide nanowires/natural rubber composites. J. Mater. Chem. C 2021, 9, 7127–7141.

    Article  CAS  Google Scholar 

  16. Yao, Y. M.; Zeng, X. L.; Pan, G. R.; Sun, J. J.; Hu, J. T.; Huang, Y.; Sun, R.; Xu, J. B.; Wong, C. P. Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity. ACS Appl. Mater. Interfaces 2016, 8, 31248–31255.

    Article  CAS  PubMed  Google Scholar 

  17. Tang, X. H.; Tang, Y.; Wang, Y.; Weng, Y. X.; Wang, M. Interfacial metallization in segregated poly(lactic acid)/poly(ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A-Appl. S 2020, 139, 106116.

    Article  CAS  Google Scholar 

  18. Jiang, C.; Tan, D.; Li, Q.; Huang, J.; Bu, J.; Zang, L.; Ji, R. N.; Bi, S.; Guo, Q. L. High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 15525–15535.

    Article  CAS  PubMed  Google Scholar 

  19. Feng, M.; Pan, Y.; Zhang, M.; Gao, Q.; Liu, C.; Shen, C.; Liu, X. H. Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Compos. Sci. Technol. 2021, 206, 108666.

    Article  CAS  Google Scholar 

  20. Zhou, X.; Deng, J. R.; Fang, C. Q.; Lei, W. Q.; Song, Y. H.; Zhang, Z. S.; Huang, Z. G.; Li, Y. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol. 2021, 60, 27–34.

    Article  Google Scholar 

  21. Mirkhani, S. A.; Iqbal, A.; Kwon, T.; Chae, A.; Kim, D.; Kim, H.; Kim, S. J.; Kim, M. K.; Koo, C. M. Reduction of electrochemically exfoliated graphene films for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 15827–15836.

    Article  CAS  PubMed  Google Scholar 

  22. Gao, M.; Peng, K.; Pan, T.; Long, F.; Lin, Y. Improving the local thermal conductivity of flexible films by microchannels filled with graphene. Compos. Commun. 2021, 25, 100689.

    Article  Google Scholar 

  23. Afroj, S.; Tan, S.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N. Highly conductive. scalable. and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293.

    Article  CAS  Google Scholar 

  24. Chen, K. Y.; Gupta, S.; Tai, N. H. Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites. Compos. Commun. 2021, 23, 100572.

    Article  Google Scholar 

  25. Agarwal, V.; Fadil, Y.; Wan, A.; Maslekar, N.; Tran, B. N.; Mat Noor, R. A.; Bhattacharyya, S.; Biazik, J.; Lim, S.; Zetterlund, P. B. Influence of anionic surfactants on the fundamental properties of polymer/reduced graphene oxide nanocomposite films. ACS Appl. Mater. Interfaces 2021, 13, 18338–18347.

    Article  CAS  PubMed  Google Scholar 

  26. Pan, X. L.; Debije, M. G.; Schenning, A. P. H. J.; Bastiaansen, C. W. M. Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites. ACS Appl. Mater. Interfaces 2021, 13, 28864–28869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

    Article  CAS  Google Scholar 

  28. Zhou, H.; Deng, H.; Zhang, L.; Fu, Q. Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks. ACS Appl. Mater. Interfaces 2017, 9, 29071–29081.

    Article  CAS  PubMed  Google Scholar 

  29. Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550.

    Article  CAS  Google Scholar 

  30. Wable, V.; Biswas, P. K.; Moheimani, R.; Aliahmad, N.; Omole, P.; Siegel, A. P.; Agarwal, M.; Dalir, H. Engineering the electrospinning of MWCNTs/epoxy nanofiber scaffolds to enhance physical and mechanical properties of CFRPs. Compos. Sci. Technol. 2021, 213, 108941.

    Article  CAS  Google Scholar 

  31. Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, L.; Zhang, L.; Li, C. Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites. Compos. Sci. Technol. 2020, 200, 108429.

    Article  CAS  Google Scholar 

  33. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Ruan, K. P.; Li, Y. G.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A-Appl. S 2020, 128, 105670.

    Article  CAS  Google Scholar 

  34. Gu, J. W.; Ruan, K. P. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity. interfacial thermal resistance and theoretics. Nano-Micro Lett. 2021, 13, 110.

    Article  CAS  Google Scholar 

  35. Guo, Y. Q.; Ruan, K. P.; Gu, J. W. Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 2021, 20, 100449.

    Article  CAS  Google Scholar 

  36. Guo, Y. Q.; Yang, X. T.; Ruan, K. P.; Kong, J.; Dong, M. Y.; Zhang, J. X.; Gu, J. W.; Guo, Z. H. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, X. T.; Guo, Y. Q.; Han, Y. X.; Li, Y.; Ma, T. B.; Chen, M. J.; Kong, J.; Zhu, J. H.; Gu, J. W. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B-Eng. 2019, 175, 107070.

    Article  Google Scholar 

  38. Jiang, H.; Le Barbenchon, L.; Bednarcyk, B. A.; Scarpa, F.; Chen, Y. Bioinspired multilayered cellular composites with enhanced energy absorption and shape recovery. Addit. Manuf. 2020, 36, 101430.

    Google Scholar 

  39. Wiese, M.; Thiede, S.; Herrmann, C. Rapid manufacturing of automotive polymer series parts: a systematic review of processes. materials and challenges. Addit. Manuf. 2020, 36, 101582.

    CAS  Google Scholar 

  40. Zou, M. M.; Zhang, Y.; Cai, Z. R.; Li, C. X.; Sun, Z. Y.; Yu, C. L.; Dong, Z. C.; Wu, L.; Song, Y. L. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications. Adv. Mater. 2021, 2021, 2102443.

    Article  Google Scholar 

  41. Bom, S.; Martins, A. M.; Ribeiro, H. M.; Marto, J. Diving into 3D (bio)printing: a revolutionary tool to customize the production of drug and cell-based systems for skin delivery. Int. J. Pharmaceut. 2021, 605, 120794.

    Article  CAS  Google Scholar 

  42. Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; DharMalhotra, B. Recent advances in 3D printing technologies for wearable (bio)sensors. Addit. Manuf. 2021, 43, 102088.

    Google Scholar 

  43. Diederichs, E. V.; Picard, M. C.; Chang, B. P.; Misra, M.; Mielewski, D. F.; Mohanty, A. K. Strategy to improve printability of renewable resource-based engineering plastic tailored for FDM applications. ACS Omega 2019, 4, 20297–20307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng, F.; Jiang, H.; Woods, A.; Joo, P.; Amis, E.J.; Zacharia, N.S.; Vogt, B.D. 3D printing with core-shell filaments containing high or low density polyethylene shells. ACS Appl. Polym. Mater. 2019, 1, 275–285.

    Article  CAS  Google Scholar 

  45. Deng, S.; Wu, J.; Dickey, M. D.; Zhao, Q.; Xie, T. Rapid open-air digital light 3D printing of thermoplastic polymer. Adv. Mater. 2019, 31, 1903970.

    Article  Google Scholar 

  46. Liu, H.; Fu, R.; Su, X.; Wu, B.; Wang, H.; Xu, Y.; Liu, X. H. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23, 100593.

    Article  Google Scholar 

  47. Gnanasekaran, K.; Heijmans, T.; Van Bennekom, S.; Woldhuis, H.; Wijnia, S.; De With, G; Friedrich, H. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl. Mater. Today 2017, 9, 21–28.

    Article  Google Scholar 

  48. Nguyen, N.; Zhang, S.; Oluwalowo, A.; Park, J. G.; Yao, K.; Liang, R. High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets. ACS Appl. Mater. Interfaces 2018, 10, 27171–27177.

    Article  CAS  PubMed  Google Scholar 

  49. Guo, Y. D.; Yang, H. N.; Lin, G. P.; Jin, H. C.; Shen, X. B.; He, J.; Miao, J.Y. Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material. Chinese J. Aeronaut. 2021, 34, 373–385.

    Article  Google Scholar 

  50. Jing, J.; Chen, Y.; Shi, S.; Yang, L.; Lambin, P. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 2020, 402, 126218.

    Article  CAS  Google Scholar 

  51. Ren, W.; Zhu, H. X.; Yang, Y. Q.; Chen, Y. H.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q. Flexible and robust silver coated non-woven fabric reinforced waterborne polyurethane films for ultra-efficient electromagnetic shielding. Compos. Part B-Eng. 2020, 184, 107745.

    Article  CAS  Google Scholar 

  52. Qian, K. P.; Zhou, Q. F.; Wu, H. M.; Fang, J. H.; Miao, M.; Yang, Y. H.; Cao, S. M.; Shi, L. Y.; Feng X. Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part A-Appl. S 2021, 141, 106229.

    Article  CAS  Google Scholar 

  53. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  54. Wang, Y.; Fan, Z. W.; Zhang, H.; Guo, J.; Yan, D. X.; Wang, S. F.; Dai, K.; Li, Z. M. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Mater. Design 2021, 197, 109222.

    Article  CAS  Google Scholar 

  55. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  56. Huang S.; Wang L.; Li Y. C.; Liang C. B.; Zhang J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51773169 and 51973173); Technical Basis Scientific Research Project (Highly Thermally Conductive Non-metal Materials); Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120093); Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2019JC-11). This work was also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Tao Shi or Jun-Wei Gu.

Additional information

Notes

The authors declare no competing financial interest.

Invited Research Article for the 40th Anniversary of Chinese Journal of Polymer Science

Electronic Supplementary Information for

10118_2022_2673_MOESM1_ESM.pdf

Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, TB., Ma, H., Ruan, KP. et al. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. Chin J Polym Sci 40, 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2673-9

Keywords

Navigation