Skip to main content

Advertisement

Log in

Preparation of High-performance Polyimide Fibers with Wholly Rigid Structures Containing Benzobisoxazole Moieties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, a fully rigid coplanar symmetric heterocyclic unit was introduced into the rigid polyimide macromolecular backbone structure to prepare high-performance polyimide fibers. The novel co-polyimide (co-PI) fibers based on 3,3’,4,4’-biphenyltetracarboxylic anhydride (BPDA), p-phenylenediamine (PDA) and 2,6-(4,4’-diaminodiphenyl) benzo[1,2-d:5,4-d’] bisoxazole (PBOA) were fabricated via a two-step wet-spinning method. The effects of benzobisoxazole moiety on spinnability, aggregation structure, and mechanical properties of fibers were systematically discussed. The detailed structural analysis revealed that the well-defined aggregation structures of co-PI fibers were obtained from initial amorphous structure when post hot-drawing temperature was higher than 460 °C under proper drawing ratio, and the incorporation PBOA into BPDA-PDA structures produced more compact structural co-PI fiber than homo BPDA-PDA fiber. The BPDA-PDA/PBOA co-PI fibers exhibited optimum tensile strength and modulus of 2.65 and 103 GPa, which increased by 182% and 84% compared to the homo BPDA-PDA fiber, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, G.; Park, M.; Park, S. J. Recent progresses of fabrication and characterization of fibers-reinforced composites: a review. Compos. Commun. 2019, 14, 34–42.

    Article  Google Scholar 

  2. Kumar, V.; Yokozeki, T.; Karch, C.; Hassen, A. A.; Hershey, C. J.; Kim, S.; Lindahl, J. M.; Barnes, A.; Bandari, Y. K.; Kunc, V. Factors affecting direct lightning strike damage to fiber reinforced composites: a review. Compos. B Eng. 2020, 183, 107688.

    Article  CAS  Google Scholar 

  3. Ali, B.; Qreshi, L. A.; Kurda, R. Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Compos. Commun. 2020, 22, 100437.

    Article  Google Scholar 

  4. Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. W.; Cheng, S. Z. D. Thermal degradation mechanism and thermal mechanical properties of two high performance aromatic polyimide fibers. J. Macromol. Sci. 1999, 38, 107–122.

    Article  Google Scholar 

  5. Zhang, Q. H.; Dai, M.; Ding, M. X.; Chen, D. J.; Gao, L. X. Mechanical properties of BPDA-ODA polyimide fibers. Eur. Polym. J. 2004, 40, 2487–2493.

    Article  CAS  Google Scholar 

  6. Jiang, S.; Uch, B.; Agarwal, S.; Greiner, A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl. Mater. Interfaces 2017, 9, 32308–32315.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482–42494.

    Article  CAS  Google Scholar 

  8. Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q. Facile method for fabricating low dielectric constant polyimide fibers with hyperbranched polysiloxane. J. Mater. Chem. C 2017, 5, 2818–2825.

    Article  CAS  Google Scholar 

  9. Yang, C.; Dong, J.; Fang, Y.; Ma, L.; Zhao, X.; Zhang, Q. Preparation of novel low-κ polyimide fibers with simultaneously excellent mechanical properties, UV-resistance and surface activity using chemically bonded hyperbranched polysiloxane. J. Mater. Chem. C 2018, 6, 1229–1238.

    Article  CAS  Google Scholar 

  10. Chen, F.; Zhai, L.; Yang, H.; Zhao, S.; Wang, Z.; Gao, C.; Zhou, J.; Liu, X.; Yu, Z.; Qin, Y. Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment. Adv. Sci. 2021, 8, 2004171.

    Article  CAS  Google Scholar 

  11. Liu, Z.; Zhang, J.; Tang, L.; Zhou, Y.; Lin, Y.; Wang, R.; Kong, J.; Tang, Y.; Gu, J. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. B Eng. 2019, 178, 107466.

    Article  CAS  Google Scholar 

  12. Gonzalez, G. M.; Ward, J.; Song, J.; Swana, K.; Fossey, S. A.; Palmer, J. L.; Zhang, F. W.; Lucian, V. M.; Cera, L.; Zimmerman, J. F. Para-aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments. Matter 2020, 3, 742–758.

    Article  Google Scholar 

  13. Dong, J.; Yin, C.; Luo, W.; Zhang, Q. Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers. J. Mater. Sci. 2013, 48, 7594–7602.

    Article  CAS  Google Scholar 

  14. Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. Highperformance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer 2013, 54, 1700–1708.

    Article  CAS  Google Scholar 

  15. Luo, L.; Wang, Y.; Zhang, J.; Huang, J.; Feng, Y.; Peng, C.; Wang, X.; Liu, X. The effect of asymmetric heterocyclic units on the microstructure and the improvement of mechanical properties of three rigid-rod co-PI fibers. Macromol. Mater. Eng. 2016, 301, 853–863.

    Article  CAS  Google Scholar 

  16. Dai, X.; Bao, F.; Jiao, L.; Yao, H.; Ji, X.; Qiu, X.; Men, Y. Highperformance polyimide copolymer fibers derived from 5-anino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: preparation, structure and properties. Polymer 2018, 150, 254–266.

    Article  CAS  Google Scholar 

  17. Sikkeama, D. J. Design, synthesis and properties of a novel rigid rod polymer, PIPD or’ M5′: high modulus and tenacity fibres with substantial compressive strength. Polymer 1998, 39, 5981–5986.

    Article  Google Scholar 

  18. Tashvigh, A. A.; Chung, T. Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. J. Membr. Sci. 2019, 572, 580–587.

    Article  Google Scholar 

  19. Park, S. K.; Farris, R. J. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 2001, 42, 10087–10093.

    Article  CAS  Google Scholar 

  20. Gan, F.; Dong, J.; Tang, M.; Li, X.; Li, M.; Zhao, X.; Zhang, Q. High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units. React. Funct. Polym. 2019, 141, 112–122.

    Article  CAS  Google Scholar 

  21. Luo, L.; Yao, J.; Wang, X.; Li, K.; Huang, J.; Li, B.; Wang, H.; Feng, Y.; Liu, X. The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions. Polymer 2014, 55, 4258–4269.

    Article  CAS  Google Scholar 

  22. Gao, G.; Dong, L.; Liu, X.; Ye, G.; Gu, Y. Structure and properties of novel PMDA/ODA/PABZ polyimide fibers. Polym. Eng. Sci. 2008, 48, 912–917.

    Article  CAS  Google Scholar 

  23. Bao, F.; Dai, X.; Dong, Z.; Yang, X.; Yao, H.; Li, G.; Qiu, X. Fabrication and properties of polyimide copolymer fibers containing pyrimidine and amide units. J. Mater. Sci. 2020, 55, 11763–11778.

    Article  CAS  Google Scholar 

  24. Zhang, M.; Niu, H.; Chang, J.; Ge, Q.; Cao, L.; Wu, D. Highperformance fibers based on copolyimides containing benzimidazole and ether moieties: molecular packing, morphology, hydrogen-bonding interactions and properties. Polym. Eng. Sci. 2015, 55, 2615–2625.

    Article  CAS  Google Scholar 

  25. Zhuang, Y.; Liu, X.; Gu, Y. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polym. Chem. 2012, 3, 1517–1525.

    Article  CAS  Google Scholar 

  26. Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of highperformance fibers. Polymer 2017, 133, 50–59.

    Article  CAS  Google Scholar 

  27. Wakita, J.; Jin, S.; Shin, T. J.; Ree, M.; Ando, S. Analysis of molecular aggregation structures of fully aromatic and semialiphatic polyimide films with synchrotron grazing incidence wide-angle X-ray scattering. Macromolecules 2010, 43, 1930–1941.

    Article  CAS  Google Scholar 

  28. Cheng, S. Z. D.; Wu, Z.; Eashoo, M.; Hsu, S. L. C.; Harris, F. W. A high-performace aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer 1990, 32, 1803–1810.

    Article  Google Scholar 

  29. Dong, J.; Yin, C.; Lin, J.; Zhang, D.; Zhang, Q. Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process. RSC Adv. 2014, 4, 44666–44673.

    Article  CAS  Google Scholar 

  30. Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 2015, 75, 178–186.

    Article  CAS  Google Scholar 

  31. Yan, X.; Zhang, M.; Qi, S.; Tian, G.; Niu, H.; Wu, D. A highperformance aromatic co-polyimide fiber: structure and property relationship during gradient thermal annealing. J. Mater. Sci. 2017, 53, 2193–2207.

    Article  Google Scholar 

  32. Yang, W.; Liu, F.; Zhang, J.; Zhang, E.; Qiu, X.; Ji, X. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber. Eur. Polym. J. 2017, 96, 429–442.

    Article  CAS  Google Scholar 

  33. Diaham, S.; Locatelli, M. L.; Khazak, R. High performance polymers-polyimides based- from chemistry to applications, 2012, DOI:https://doi.org/10.5772/53994.

  34. Thulnemann, A. F. Microvoids in polyacrylonitrile fibers: a small-angle X-ray scattering study. Macromolecules 2000, 33, 1848–1852.

    Article  Google Scholar 

  35. Jiang, X.; Xiao, X.; Dong, J.; Xu, X.; Zhao, X.; Zhang, Q. Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. J. Membr. Sci. 2018, 564, 605–616.

    Article  CAS  Google Scholar 

  36. Huang, S. B.; Jiang, Z. Y.; Ma, X. Y.; Qiu, X. P.; Men, Y. F.; Gao, L. X.; Ding, M. X. Properties, morphology and structure of BPDA/PPD/ODA polyimide fibres. Plast. Rubber Compos. 2013, 42, 407–415.

    Article  Google Scholar 

  37. Fang, Y.; Dong, J.; Zhang, D.; Zhao, X.; Zhang, Q. Preparation of high-performance polyimide fibers via a partial pre-imidization process. J. Mater. Sci. 2018, 54, 3619–3631.

    Article  Google Scholar 

  38. Yin, C.; Dong, J.; Li, Z.; Zhang, Z.; Zhang, Q. Ternary phase diagram and fiber morphology for nonsolvent/DMAc/polyamic acid systems. Polym. Bull. 2015, 72, 1039–1054.

    Article  CAS  Google Scholar 

  39. Ree, M.; Kim, K.; Woo, S. H.; Chang, H. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. J. Appl. Phys. 1997, 81, 698–708.

    Article  CAS  Google Scholar 

  40. Wu, T.; Chvalun, S.; Biackwell, J. X-ray analysis and molecular modelling of the structure of aromatic copolyimides. Polymer 1995, 36, 2123–2131.

    Article  CAS  Google Scholar 

  41. Yi, X.; Gao, Y.; Zhang, M.; Zhang, C.; Wang, Q.; Liu, G.; Dong, X.; Wu, D.; Men, Y.; Wang, D. Tensile modulus enhancement and mechanism of polyimide fibers by post-thermal treatment induced microvoid evolution. Eur. Polym. J. 2017, 91, 232–241.

    Article  CAS  Google Scholar 

  42. Ran, S.; Burger, C.; Fang, D.; Zong, X.; Chu, B.; Hsiao, B. S.; Ohta, Y.; YAbuki, K.; Cuniff, P. M. A synchrotron WAXD study on the early stages of coagulation during PBO fiber spinning. Macromolecules 2002, 35, 9851–9853.

    Article  CAS  Google Scholar 

  43. Yu, J.; Wang, R.; Yang, C.; Chen, S.; Tian, F.; Wang, H.; Zhang, Y. Morphology and structure changes of aromatic copolysulfonamide fibers heat-drawn at various temperatures. Polym. Int. 2014, 63, 2084–2090.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51903038 and 21975040) and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110897).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Ting Li or Qing-Hua Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, YT., Gan, F., Dong, J. et al. Preparation of High-performance Polyimide Fibers with Wholly Rigid Structures Containing Benzobisoxazole Moieties. Chin J Polym Sci 40, 280–289 (2022). https://doi.org/10.1007/s10118-022-2666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2666-8

Keywords

Navigation