Skip to main content
Log in

Cellulose Nanocrystals-mediated Phase Morphology of PLLA/TPU Blends for 3D Printing

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Incorporation of nanoparticles into polymer blend to obtain finely dispersed morphology has been considered as an effective strategy to prepare nanocomposites. Owing to the renewable and degradable characters, cellulose nanocrystals (CNCs) have been proposed to tailor the phase morphology of poly(L-lactic acid) (PLLA) blend for producing high-performance fused deposition modeling (FDM) consumables. However, the main challenge associated with the ternary systems is the dispersion of the highly hydrophilic CNCs in non-polar PLLA blend by industrial melt blending without involving solution. Herein, with poly(vinyl acetate) (PVAc) modified CNCs powder (a mixture of PVAc grafted from CNCs and PVAc homopolymer latex), the selective dispersion of CNCs in PLLA has been achieved by simple melt processing of PLLA/TPU (polyether polyurethane)/CNCs blend. This results in the ultra-fine TPU droplets at nanoscale in PLLA and improves the melt processibility of composites in FDM due to the decreased viscosity ratio of the dispersed/matrix and the enhanced melt elasticity of PLLA. Combined with the intensive shear and continuous stretch effect during FDM, aligned TPU nanofibers (TNFs) were in situ formed along the elongational flow direction during deposition, which in turn contributed to the improvement of PLLA/TPU/CNCs with 5 wt% filler loading in tensile ductility by 418%, inter-layer adhesion strength and notched impact toughness by 261% and 210%, respectively, as well as achieved good dimensional accuracy and very fine surface quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goh, G. D.; Yap, Y. L.; Tan, H. K. J.; Sing, S. L.; Goh, G. L.; Yeong, W. Y. Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Crit. Rev. Solid. State. 2019, 45, 113–133.

    Article  Google Scholar 

  2. Wasti, S.; Adhikari, S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front. Chem. 2020, 8, 315.

    Article  CAS  Google Scholar 

  3. Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.

    Article  CAS  Google Scholar 

  4. Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Tech. 2019, 102, 2877–2889.

    Article  Google Scholar 

  5. Nofar, M.; Salehiyan, R.; Sinha Ray, S. Rheology of poly(lactic acid)-based systems. Polym. Rev. 2019, 59, 465–509.

    Article  CAS  Google Scholar 

  6. Jašo, V.; Cvetinov, M.; Rakić, S.; Petrović, Z. S. Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. J. Appl. Polym. Sci. 2014, 131, 41104.

    Article  Google Scholar 

  7. Wu, M.; Wu, Z.; Wang, K.; Zhang, Q.; Fu, Q. Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. Polymer 2014, 55, 6409–6417.

    Article  CAS  Google Scholar 

  8. Xu, C.; Yuan, D.; Fu, L.; Chen, Y. Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology. Polym. Test. 2014, 37, 94–101.

    Article  Google Scholar 

  9. Nofar, M.; Sacligil, D.; Carreau, P. J.; Kamal, M. R.; Heuzey, M. C. Poly(lactic acid) blends: processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360.

    Article  CAS  Google Scholar 

  10. Yu, F.; Huang, H. X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym. Test. 2015, 45, 107–113.

    Article  CAS  Google Scholar 

  11. Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265–271.

    Article  CAS  Google Scholar 

  12. Göldel, A.; Marmur, A.; Kasaliwal, G. R.; Pötschke, P.; Heinrich, G. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 2011, 44, 6094–6102.

    Article  Google Scholar 

  13. Jalali Dil, E.; Favis, B. D. Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer 2015, 76, 295–306.

    Article  CAS  Google Scholar 

  14. Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A. N.; Mangalam, A.; Simonsen, J.; Benight, A. S.; Bismarck, A.; Berglund, L. A.; Peijs, T. Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33.

    Article  CAS  Google Scholar 

  15. Bitinis, N.; Verdejo, R.; Bras, J.; Fortunati, E.; Kenny, J. M.; Torre, L.; Lopez-Manchado, M. A. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydr. Polym. 2013, 96, 611–620.

    Article  CAS  Google Scholar 

  16. Arrieta, M. P.; Fortunati, E.; Dominici, F.; Rayon, E.; Lopez, J.; Kenny, J. M. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr. Polym. 2014, 107, 16–24.

    Article  CAS  Google Scholar 

  17. Heshmati, V.; Kamal, M. R.; Favis, B. D. Tuning the localization of finely dispersed cellulose nanocrystal in poly(lactic acid)/bio-polyamide11 blends. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 576–587.

    Article  CAS  Google Scholar 

  18. Liu, Y.; Lu, Y.; Zhang, H.; Liu, X.; Kong, Z.; Zhou, L.; Liu, H.; Zhang, J. Polymer grafting on cellulose nanocrystals initiated by ceric ammonium nitrate: is it feasible under acid-free conditions? Green Chem. 2021, https://doi.org/10.1039/D1GC03142B.

  19. Liu, Y.; Liu, L.; Wang, K.; Zhang, H.; Yuan, Y.; Wei, H.; Wang, X.; Duan, Y.; Zhou, L.; Zhang, J. Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. Carbohydr. Polym. 2020, 229, 115572.

    Article  CAS  Google Scholar 

  20. Oliaei, E.; Kaffashi, B.; Davoodi, S. Investigation of structure and mechanical properties of toughened poly(L-lactide)/thermoplastic poly (ester urethane) blends. J. Appl. Polym. Sci. 2016, 133(15), 43104.

    Article  Google Scholar 

  21. Pracella, M.; Haque, M. M. U.; Puglia, D. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 2014, 55, 3720–3728.

    Article  CAS  Google Scholar 

  22. Dufresne, A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos. Trans. A Math. Phys. Eng. Sci. 2018, 376, 0040.

    Google Scholar 

  23. Le Corroller, P.; Favis, B. D. Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer 2011, 52, 3827–3834.

    Article  CAS  Google Scholar 

  24. Nuzzo, A.; Coiai, S.; Carroccio, S. C.; Dintcheva, N. T.; Gambarotti, C.; Filippone, G. Heat-resistant fully bio-based nanocomposite blends based on poly(lactic acid). Macromol. Mater. Eng. 2014, 299, 31–40.

    Article  CAS  Google Scholar 

  25. Elias, L.; Fenouillot, F.; Majeste, J. C.; Cassagnau, P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 2007, 48, 6029–6040.

    Article  CAS  Google Scholar 

  26. Krasovitski, B.; Marmur, A. Particle adhesion to drops. J. Adhes. 2007, 81, 869–880.

    Article  Google Scholar 

  27. Yu, G.; Zhang, M.; Zeng, H.; Hou, Y.; Zhang, H. Effect of filler treatment on temperature dependence of resistivity of carbon-black-filled polymer blends. J. Appl. Polym. Sci. 1999, 73, 489–494.

    Article  CAS  Google Scholar 

  28. Owens, D. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.

    Article  CAS  Google Scholar 

  29. Vatansever, E.; Arslan, D.; Nofar, M. Polylactide cellulose-based nanocomposites. Int. J. Biol. Macromol. 2019, 137, 912–938.

    Article  CAS  Google Scholar 

  30. Chen, G.; Chen, N.; Wang, Q. Preparation of poly(vinyl alcohol)/ionic liquid composites with improved processability and electrical conductivity for fused deposition modeling. Mater. Design. 2018, 157, 273–283.

    Article  CAS  Google Scholar 

  31. Heshmati, V.; Kamal, M. R.; Favis, B. D. Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: preparation, morphology and co-continuity. Eur. Polym. J. 2018, 98, 11–20.

    Article  CAS  Google Scholar 

  32. Ou-Yang, Q.; Guo, B.; Xu, J. Preparation and characterization of poly (butylene succinate)/polylactide blends for fused deposition modeling 3D printing. ACS Omega 2018, 3, 14309–14317.

    Article  Google Scholar 

  33. Wickramasinghe, S.; Do, T.; Tran, P. FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers 2020, 12, 1529.

    Article  CAS  Google Scholar 

  34. Ertan, R.; Durgun, I. Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyping J. 2014, 20, 228–235.

    Article  Google Scholar 

  35. Jiang, Y.; Leng, J.; Zhang, J. A high-efficiency way to improve the shape memory property of 4D-printed polyurethane/polylactide composite by forming in situ microfibers during extrusion-based additive manufacturing. Addit. Manuf. 2021, 38, 101718.

    CAS  Google Scholar 

  36. Zhang, X; Wang, J. Controllable interfacial adhesion behaviors of polymer-on-polymer surfaces during fused deposition modeling 3D printing process. Chem. Phys. Lett. 2020, 739, 136959.

    Article  CAS  Google Scholar 

  37. Zhang, X.; Fan, W.; Liu, T. Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos. Commun. 2020, 21, 100413.

    Article  Google Scholar 

  38. Doddamani, M. Dynamic mechanical analysis of 3D printed ecofriendly lightweight composite. Compos. Commun. 2020, 19, 177–181.

    Article  Google Scholar 

  39. Mishra, P.; Senthil, P.; Adarsh, S.; Anoop, M. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Compos. Commun. 2021, 24, 100605.

    Article  Google Scholar 

  40. Dave, H.; Patadiya, N.; Prajapati, A.; Rajpurohi, S. Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modelling printed poly-lactic acid part. J. Mechan. Eng. Sci. 2021, DOI: https://doi.org/10.1177/0954406219856383.

  41. Qattawi, A.; Alrawi, B.; Guzman, A. Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 2017, 10, 791–803.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21774068, 51503782) and Key Research and Development Program of Shaanxi Province of China (No. 2021GY-236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ming Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, YX., Wu, HP. et al. Cellulose Nanocrystals-mediated Phase Morphology of PLLA/TPU Blends for 3D Printing. Chin J Polym Sci 40, 299–309 (2022). https://doi.org/10.1007/s10118-022-2665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2665-9

Keywords

Navigation