Skip to main content
Log in

Reversible CO2-, Photo- and Thermo- Triple Responsive Supramolecular Chirality of Azo-containing Block Copolymer Assemblies Prepared by Polymerization-induced Chiral Self-assembly

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymerization-induced chiral self-assembly (PICSA) is an efficient strategy that not only allows the construction of the supramolecular chiral assemblies in a controlled manner but also can regulate the morphology in situ. Herein, a series of azobenzene-containing block copolymer (Azo-BCP) assemblies with tunable morphologies and supramolecular chirality were obtained through the PICSA strategy. The supramolecular chirality of Azo-BCP assemblies could be regulated by carbon dioxide (CO2) stimulus, and completely recovered by bubbling with Ar. A reversible morphology transformation and chiroptical switching process could also be achieved by the alternative 365 nm UV light irradiation and heating-cooling treatment. Moreover, the supramolecular chirality is thermo-responsive and a reversible chiral-achiral switching was successfully realized, which can be reversibly repeated for at least five times. This work provides a feasible strategy for constructing triple stimuli-responsive supramolecular chiral nano-objects in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón, C. D. I. H.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285.

    Article  Google Scholar 

  2. Han, D.; Tong, X.; Zhao, Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 2012, 28, 2327–2331.

    Article  CAS  PubMed  Google Scholar 

  3. Hua, D.; Jiang, J.; Kuang, L.; Jiang, J.; Zheng, W.; Liang, H. Smart chitosan-based stimuli-responsive nanocarriers for the controlled delivery of hydrophobic pharmaceuticals. Macromolecules 2011, 44, 1298–1302.

    Article  CAS  Google Scholar 

  4. Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X.; Car, A.; Meier, W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 2016, 45, 377–411.

    Article  CAS  PubMed  Google Scholar 

  5. Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

    Article  CAS  PubMed  Google Scholar 

  6. Huo M.; Yuan J.; Tao L.; Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 2014, 5, 5183–5184.

    Article  CAS  Google Scholar 

  7. Yuan, W.; Guo, W. Ultraviolet light-breakable and tunable thermoresponsive amphiphilic block copolymer: from self-assembly, disassembly to re-self-assembly. Polym. Chem. 2014, 5, 4259–4267.

    Article  CAS  Google Scholar 

  8. Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, W.; Guo, W.; Zou, H.; Ren, J. Tunable thermo-, pH- and light-responsive copolymer micelles. Polym. Chem. 2013, 4, 3934–3937.

    Article  CAS  Google Scholar 

  10. Xu, X. F.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymerization-induced self-assembly generating vesicles with adjustable ph-responsive release performance. Macormolecules 2019, 52, 1965–1975.

    Article  CAS  Google Scholar 

  11. Gibson, M. I.; O’Reilly, R. K. To aggregate, or not to aggregate? Considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem. Soc. Rev. 2013, 42, 7204–7213.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, D.; Wang, X. Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 2013, 38, 271–301.

    Article  CAS  Google Scholar 

  13. Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 2014, 5, 1519–1528.

    Article  CAS  Google Scholar 

  14. Zhang, Q.; Lei, L.; Zhu, S. Gas-responsive polymers. ACS Macro Lett. 2017, 6, 515–522.

    Article  CAS  Google Scholar 

  15. Yan, Q.; Zhao, Y. Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chem. Commun. 2014, 50, 11631–11641.

    Article  CAS  Google Scholar 

  16. Darabi, A.; Jessop, P. G.; Cunningham, M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev. 2016, 45, 4391–4436.

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham, M. F.; Jessop, P. G. Carbon dioxide-switchable polymers: where are the future opportunities. Macromolecules 2019, 52, 6801–6816.

    Article  CAS  Google Scholar 

  18. Lin, S.; Theato, P. CO2-responsive polymers. Macromol. Rapid Commun. 2013, 34, 1118–1133.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, H.; Lin, S.; Feng, Y.; Theato, P. CO2-responsive polymer materials. Polym. Chem. 2017, 8, 12–23.

    Article  Google Scholar 

  20. Fowler, C. I.; Jessop, P. G.; Cunningham, M. F. Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules 2012, 45, 2955–2962.

    Article  CAS  Google Scholar 

  21. Yan, Q.; Zhao, Y. CO2-stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc. 2013, 135, 16300–16303.

    Article  CAS  PubMed  Google Scholar 

  22. Yan, B.; Han, D.; Boissière, O.; Ayotte, P.; Zhao, Y. Manipulation of block copolymer vesicles using CO2: dissociation or “breathing”. Soft Matter 2013, 9, 2011–2016.

    Article  CAS  Google Scholar 

  23. Yan, Q.; Zhao, Y. Polymeric microtubules that breathe: CO2-driven polymer controlled-self-assembly and shape transformation. Angew. Chem. Int. Ed. 2013, 52, 9948–9951.

    Article  CAS  Google Scholar 

  24. Yan, Q.; Zhou, R.; Fu, C.; Zhang, H.; Yin, Y.; Yuan, J. CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed. 2011, 50, 4923–4927.

    Article  CAS  Google Scholar 

  25. Zeng, M.; Huo, M.; Feng, Y.; Yuan, J. CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun. 2018, 39, 1800291.

    Article  Google Scholar 

  26. Ye, Q.; Huo, M.; Zeng, M.; Liu, L.; Peng, L.; Wang, X.; Yuan, J. Photoinduced reversible worm-to-vesicle transformation of azo-containing block copolymer assemblies prepared by polymerization-induced self-assembly. Macromolecules 2018, 51, 3308–3314.

    Article  CAS  Google Scholar 

  27. Hou, X.; Guan, S.; Qu, T.; Wu, X.; Wang, D.; Chen, A.; Yang, Z. Light-triggered reversible self-engulfing of Janus nanoparticles. ACS Macro Lett. 2018, 7, 1475–1479.

    Article  CAS  Google Scholar 

  28. Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

    Article  CAS  PubMed  Google Scholar 

  29. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 2001, 101, 4039–4070.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, X. X.; Miao, T. F.; Yin, L.; Zhang, W.; Zhu, X. L. Construction of supramolecular chirality in polymer systems: chiral induction, transfer and application. Chinese J. Polym. Sci. 2021, 39, 1357–1375.

    Article  Google Scholar 

  31. Zhang, W.; Yoshida, K.; Fujiki, M.; Zhu, X. Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt-fluorene copolymer in limonene. Macromolecules 2011, 44, 5105–5111.

    Article  CAS  Google Scholar 

  32. Yin, L.; Zhao, Y.; Jiang, S.; Wang, L.; Zhang, Z.; Zhu, J.; Zhang, W.; Zhu, X. Preferential chiral solvation induced supramolecular chirality in optically inactive star Azo polymers: photocontrollability, chiral amplification and topological effects. Polym. Chem. 2015, 6, 7045–7052.

    Article  CAS  Google Scholar 

  33. Yin, L.; Zhao, Y.; Liu, M.; Zhou, N.; Zhang, W.; Zhu, X. Induction of supramolecular chirality by chiral solvation in achiral Azo polymers with different spacer lengths and push-pull electronic substituents: where will chiral induction appear. Polym. Chem. 2017, 8, 1906–1913.

    Article  CAS  Google Scholar 

  34. Yin, L.; Liu, M.; Zhao, Y.; Zhang, S.; Zhang, W.; Zhang, Z.; Zhu, X. Supramolecular chirality induced by chiral solvation in achiral cyclic Azo-containing polymers: topological effects on chiral aggregation. Polym. Chem. 2018, 9, 769–776.

    Article  CAS  Google Scholar 

  35. Jiang, S.; Zhao, Y.; Wang, L.; Yin, L.; Zhang, Z.; Zhu, J.; Zhang, W.; Zhu, X. Photocontrollable induction of supramolecular chirality in achiral side chain Azo-containing polymers through preferential chiral solvation. Polym. Chem. 2015, 6, 4230–4239.

    Article  CAS  Google Scholar 

  36. Yang, D.; Zhang, L.; Yin, L.; Zhao, Y.; Zhang, W.; Liu, M. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. Soft Matter 2017, 13, 6129–6136.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 2017, 139, 13218–13226.

    Article  CAS  PubMed  Google Scholar 

  38. Iftime, G.; Labarthet, F. L.; Natansohn, A.; Rochon, P. Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light. J. Am. Chem. Soc. 2000, 122, 12646–12650.

    Article  CAS  Google Scholar 

  39. Cheng, X. X.; Miao, T. F.; Yin, L.; Ji, Y. J.; Li, Y. Y.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly. Angew. Chem. Int. Ed. 2020, 59, 9669–9677.

    Article  CAS  Google Scholar 

  40. Yoshino, T.; Kondo, M.; Mamiya, J. I.; Kinoshita, M.; Yu, Y.; Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 2010, 22, 1361–1363.

    Article  CAS  PubMed  Google Scholar 

  41. Yu, H.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337–3344.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, S.; Niu, L.; Shen, J.; Zhang, Q.; Bubeck, C. Aggregation-induced reversible thermochromism of novel azo chromophore-functionalized polydiacetylene cylindrical micelles. Macromolecules 2009, 42, 362–367.

    Article  CAS  Google Scholar 

  43. Zou, H.; Yuan, W. CO2- and thermo-responsive vesicles: from expansion-contraction transformation to vesicles-micelles transition. Polym. Chem. 2015, 6, 2457–2465.

    Article  CAS  Google Scholar 

  44. Liu, B.W.; Zhou, H.; Zhou, S. T.; Zhang, H. J.; Feng, A.C.; Jian, C. M.; Hu, J.; Gao, W. P.; Yuan, J. Y. Synthesis and self-assembly of CO2-temperature dual stimuli-responsive triblock copolymers. Macromolecules 2014, 47, 2938–2946.

    Article  CAS  Google Scholar 

  45. Yamada, M.; Kondo, M.; Mamiya, J. I.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47, 4986–4988.

    Article  CAS  Google Scholar 

  46. Natansohn, A.; Rochon, P. Photoinduced motions in Azo-containing polymers. Chem. Rev. 2002, 102, 4139–4176.

    Article  CAS  PubMed  Google Scholar 

  47. Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437.

    Article  CAS  PubMed  Google Scholar 

  48. Kadota, S.; Aoki, K.; Nagano, S.; Seki, T. Photocontrolled microphase separation of block copolymers in two dimensions. J. Am. Chem. Soc. 2005, 127, 8266–8267.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Y. Light-responsive block copolymer micelles. Macromolecules 2012, 45, 3647–3657.

    Article  CAS  Google Scholar 

  50. Wang, G.; Tong, X.; Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004, 37, 8911–8917.

    Article  CAS  Google Scholar 

  51. del Barrio, J.; Oriol, L.; Sánchez, C.; Serrano, J. L.; Di Cicco, A.; Keller, P.; Li, M. H. Self-assembly of linear-dendritic diblock copolymers: from nanofibers to polymersomes. J. Am. Chem. Soc. 2010, 132, 3762–3769.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 92056111 and 21971180), Nature Science Key Basic Research of Jiangsu Province for Higher Education (No. 19KJA360006), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_2655) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions supported this work. Prof. W. Zhang thanks Mr. J. Z. Wang in University of Waterloo for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2021_2647_MOESM1_ESM.pdf

Reversible CO2-, Photo- and Thermal Triple Responsive Supramolecular Chirality of Azo-containing Block Copolymer Assemblies Prepared by Polymerization-induced chiral Self-assembly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YJ., Cheng, XX., Miao, TF. et al. Reversible CO2-, Photo- and Thermo- Triple Responsive Supramolecular Chirality of Azo-containing Block Copolymer Assemblies Prepared by Polymerization-induced Chiral Self-assembly. Chin J Polym Sci 40, 56–66 (2022). https://doi.org/10.1007/s10118-021-2647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2647-3

Keywords

Navigation