Skip to main content
Log in

Software Package: An Advanced Theoretical Tool for Inhomogeneous Fluids (Atif)

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In spite of the impending flattening of Moore’s law, the complexity and size of the systems we are interested in keep on increasing. This challenges the computer simulation tools due to the expensive computational cost. Fortunately, advanced theoretical methods can be considered as alternatives to accurately and efficiently capture the structural and thermodynamic properties of complex inhomogeneous fluids. In the last decades, classical density functional theory (cDFT) has proven to be a sophisticated, robust, and efficient approach for studying complex inhomogeneous fluids. In this work, we present a pedagogical introduction to a broadly accessible open-source density functional theory software package named “an advanced theoretical tool for inhomogeneous fluids” (Atif) and of the underlying theory. To demonstrate Atif, we take three cases as examples using a typical laptop computer: (i) electric double-layer of asymmetric electrolytes; (ii) adsorptions of sequence-defined semiflexible polyelectrolytes on an oppositely charged surface; and (iii) interactions between surfaces mediated by polyelectrolytes. We believe that this pedagogical introduction will lower the barrier to entry to the use of Atif by experimental as well as theoretical groups. A companion website, which provides all of the relevant sources including codes and examples, is attached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, Y. X.; Wu, J.; Gao, G. H. Density-functional theory of spherical electric double layers and Zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions. J. Chem. Phys. 2004, 120, 7223–7233.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, J. Density functional theory for chemical engineering: from capillarity to soft materials. AIChE J. 2006, 52, 1169–1193.

    Article  CAS  Google Scholar 

  3. Wu, J.; Li, Z. Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 2007, 58, 85–112.

    Article  CAS  PubMed  Google Scholar 

  4. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  5. Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 1965, 137, A1441–A1443.

    Article  Google Scholar 

  6. Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 1979, 28, 143–200.

    Article  CAS  Google Scholar 

  7. Tarazona, P. A density functional theory of melting. Mol. Phys. 1984, 52, 81–96.

    Article  CAS  Google Scholar 

  8. Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980–983.

    Article  CAS  PubMed  Google Scholar 

  9. Mier-y-Teran, L.; Suh, S. H.; White, H. S.; Davis, H. T. A nonlocal free-energy density-functional approximation for the electrical double layer. J. Chem. Phys. 1990, 92, 5087–5098.

    Article  CAS  Google Scholar 

  10. Tang, Z.; Scriven, L. E.; Davis, H. T. A three-component model of the electrical double layer. J. Chem. Phys. 1992, 97, 494–503.

    Article  CAS  Google Scholar 

  11. Kierlik, E.; Rosinberg, M. L. Free-energy density functional for the inhomogeneous hard-sphere fluid: application to interfacial adsorption. Phys. Rev. A 1990, 42, 3382–3387.

    Article  CAS  PubMed  Google Scholar 

  12. Woodward, C. E.; Yethiraj, A. Density functional theory for inhomogeneous polymer solutions. J. Chem. Phys. 1994, 100, 3181–3186.

    Article  CAS  Google Scholar 

  13. Li, Z.; Wu, J. Density functional theory for polyelectrolytes near oppositely charged surfaces. Phys. Rev. Lett. 2006, 96, 048302–048305.

    Article  PubMed  Google Scholar 

  14. Wertheim, M. S. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 1984, 35, 19–34.

    Article  Google Scholar 

  15. Wertheim, M. S. Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 1984, 35, 35–47.

    Article  Google Scholar 

  16. Wertheim, M. S. Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys. 1986, 42, 459–476.

    Article  Google Scholar 

  17. Wertheim, M. S. Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. 1986, 42, 477–492.

    Article  Google Scholar 

  18. Wertheim, M. S. Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. J. Chem. Phys. 1986, 85, 2929–2936.

    Article  CAS  Google Scholar 

  19. Wertheim, M. S. Thermodynamic perturbation theory of polymerization. J. Chem. Phys. 1987, 87, 7323–7331.

    Article  CAS  Google Scholar 

  20. Wertheim, M. S. Integral equation for the Smith-Nezbeda model of associated fluids. J. Chem. Phys. 1988, 88, 1145–1155.

    Article  CAS  Google Scholar 

  21. Jiang, J. W.; Liu, H.; Hu, Y.; Prausnitz, J. M. A molecular-thermodynamic model for polyelectrolyte solutions. J. Chem. Phys. 1998, 108, 780–784.

    Article  CAS  Google Scholar 

  22. Jiang, J. W.; Blum, L.; Bernard, O.; Prausnitz, J. M. Thermodynamic properties and phase equilibria of charged hard sphere chain model for polyelectrolyte solutions. Mol. Phys. 2001, 99, 1121–1128.

    Article  CAS  Google Scholar 

  23. Yu, Y. X.; Wu, J. Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 2002, 117, 10156–10164.

    Article  CAS  Google Scholar 

  24. Roth, R.; Evans, R.; Lang, A.; Kahl, G. Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys.: Condens. Matter 2002, 14, 12063–12078.

    CAS  Google Scholar 

  25. Jiang, J.; Ginzburg, V. V.; Wang, Z. G. Density functional theory for charged fluids. Soft Matter 2018, 14, 5878–5887.

    Article  CAS  PubMed  Google Scholar 

  26. Blum, L. Mean spherical model for asymmetric electrolytes. Mol. Phys. 1975, 30, 1529–1535.

    Article  CAS  Google Scholar 

  27. Blum, L.; Hoeye, J. S. Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 1977, 81, 1311–1316.

    Article  CAS  Google Scholar 

  28. Hiroike, K. Supplement to Blum’s theory for asymmetric electrolytes. Mol. Phys. 1977, 33, 1195–1198.

    Article  CAS  Google Scholar 

  29. Forsman, J.; Nordholm, S. Polyelectrolyte mediated interactions in colloidal dispersions: hierarchical screening, simulations, and a new classical density functional theory. Langmuir 2012, 28, 4069–4079.

    Article  CAS  PubMed  Google Scholar 

  30. Forsman, J. Polyelectrolyte adsorption: electrostatic mechanisms and nonmonotonic responses to salt addition. Langmuir 2012, 28, 5138–5150.

    Article  CAS  PubMed  Google Scholar 

  31. Sandia National Laboratories, Tramonto. https://software.sandia.gov/tramonto/index.html.

  32. Jiang, J. Non-monotonic effects of intrinsic stiffness and concentration of polyelectrolytes on the electro-sorption. Macromolecules 2021, 54, 1801–1810.

    Article  CAS  Google Scholar 

  33. Chang, Q.; Jiang, J. Adsorption of block-polyelectrolytes on an oppositely charged surface. Macromolecules 2021, 54, 4145–4153.

    Article  CAS  Google Scholar 

  34. Kratky, O.; Porod, G. Röntgenuntersuchung gelöster Fadenmoleküle. Recl. Trav. Chim. Pays-Bas 1949, 68, 1106–1122.

    Article  CAS  Google Scholar 

  35. Grosberg, A. Y.; Khokhlov, A. R.; Onuchic, J. N. Statistical physics of macromolecules. Phys. Today 1995, 48, 92–93.

    Article  Google Scholar 

  36. Rubinstein, M.; Colby, R. In Polymer Physics; Rubinstein, M., Colby, R., Eds.; Oxford University Press: New York: NY, USA, 2003.

  37. Reisner, W.; Pedersen, J. N.; Austin, R. H. DNA confinement in nanochannels: physics and biological applications. Rep. Prog. Phys. 2012, 75, 106601–106634.

    Article  PubMed  Google Scholar 

  38. Köster, S.; Weitz, D. A.; Goldman, R. D.; Aebi, U.; Herrmann, H. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 2015, 32, 82–91.

    Article  PubMed  Google Scholar 

  39. Marantan, A.; Mahadevan, L. Mechanics and statistics of the worm-like chain. Am. J. Phys. 2018, 86, 86.

    Article  CAS  Google Scholar 

  40. Honnell, K. G.; Curro, J. G.; Schweizer, K. S. Local structure of semiflexible polymer melts. Macromolecules 1990, 23, 3496–3505.

    Article  CAS  Google Scholar 

  41. Phan, S.; Kierlik, E.; Rosinberg, M. L.; Yethiraj, A.; Dickman, R. Perturbation density functional theory and Monte Carlo simulations for the structure of hard triatomic fluids in slitlike pores. J. Chem. Phys. 1995, 102, 2141–2150.

    Article  CAS  Google Scholar 

  42. Forsman, J.; Woodward, C. E. An improved density functional description of hard sphere polymer fluids at low density. J. Chem. Phys. 2003, 119, 1889–1892.

    Article  CAS  Google Scholar 

  43. Cao, D.; Wu, J. Density functional theory for semiflexible and cyclic polyatomic fluids. J. Chem. Phys. 2004, 121, 4210–4220.

    Article  CAS  PubMed  Google Scholar 

  44. Forsman, J.; Woodward, C. E. Surface forces in solutions containing rigid polymers: approaching the rod limit. Macromolecules 2006, 39, 1269–1278.

    Article  CAS  Google Scholar 

  45. Turesson, M.; Forsman, J.; Åkesson, T. Surface forces mediated by charged polymers: effects of intrinsic chain stiffness. Langmuir 2006, 22, 5734–5741.

    Article  CAS  PubMed  Google Scholar 

  46. Turesson, M.; Woodward, C. E.; Åkesson, T.; Forsman, J. Simulations of surface forces in polyelectrolyte solutions. J. Phys. Chem. B 2008, 112, 5116–5125.

    Article  CAS  PubMed  Google Scholar 

  47. Egorov, S. A.; Milchev, A.; Virnau, P.; Binder, K. Semiflexible polymers under good solvent conditions interacting with repulsive walls. J. Chem. Phys. 2016, 144, 174902–174914.

    Article  PubMed  Google Scholar 

  48. Milchev, A.; Binder, K. How does stiffness of polymer chains affect their adsorption transition? J. Chem. Phys. 2020, 152, 064901.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, J.; Gillespie, D. Revisiting the charged shell model: a density functional theory for electrolytes. Journal of Chemical Theory and Computation 2021, 17, 2409–2416.

    Article  CAS  PubMed  Google Scholar 

  50. Roth, R.; Gillespie, D. Shells of charge: a density functional theory for charged hard spheres. J. Phys.: Condens. Matter 2016, 28, 244006–244015.

    Google Scholar 

  51. Jiang, J.; Xu, X.; Huang, J.; Cao, D. Density functional theory for rod-coil polymers with different size segments. J. Chem. Phys. 2011, 135, 054903–054911.

    Article  PubMed  Google Scholar 

  52. Patra, C. N.; Yethiraj, A. Generalized van der Waals density functional theory for nonuniform polymers. J. Chem. Phys. 2000, 112, 1579–1584.

    Article  CAS  Google Scholar 

  53. Eyert, V. A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comput. Phys. 1996, 124, 271–285.

    Article  Google Scholar 

  54. Jiang, J. Atif (an Advanced Theoretical Tool for Inhomogeneous Fluids). https://github.com/jiangj-physchem/Atif.

  55. Gillespie, D.; Nonner, W.; Eisenberg, R. S. Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 2002, 14, 12129–12145.

    CAS  Google Scholar 

  56. Valiskó, M.; Kristóf, T.; Gillespie, D.; Boda, D. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences. AIP Adv. 2018, 8, 025320–025329.

    Article  Google Scholar 

  57. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Multiblock polymers: Panacea or Pandora’s box? Science 2012, 336, 434–440.

    Article  CAS  PubMed  Google Scholar 

  58. Lutz, J.F.; Ouchi, M.; Liu, D. R.; Sawamoto, M. Sequence-controlled polymers. Science 2013, 341, 1238149.

    Article  PubMed  Google Scholar 

  59. Lutz, J.F.; Lehn, J.M.; Meijer, E. W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024–16037.

    Article  CAS  Google Scholar 

  60. Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324.

    Article  CAS  PubMed  Google Scholar 

  61. Howe, A. M.; Wesley, R. D.; Bertrand, M.; Côte, M.; Leroy, J. Controlled association in suspensions of charged nanoparticles with a weak polyelectrolyte. Langmuir 2006, 22, 4518–4525.

    Article  CAS  PubMed  Google Scholar 

  62. Claesson, P. M.; Dedinaite, A.; Rojas, O. J. Polyelectrolytes as adhesion modifiers. Adv. Colloid Interface Sci. 2003, 104, 53–74.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, J.; Ginzburg, V. V.; Wang, Z. G. On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution. J. Chem. Phys. 2019, 151, 214901.

    Article  PubMed  Google Scholar 

  64. Balzer, C.; Jiang, J.; Marson, R. L.; Ginzburg, V. V.; Wang, Z. G. Nonelectrostatic adsorption of polyelectrolytes and mediated interactions between solid surfaces. Langmuir 2021, 37, 5483–5493.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21973104). This work was carried out at the National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jiang.

Additional information

Notes

The author declares no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J. Software Package: An Advanced Theoretical Tool for Inhomogeneous Fluids (Atif). Chin J Polym Sci 40, 220–230 (2022). https://doi.org/10.1007/s10118-021-2646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2646-4

Keywords

Navigation