Skip to main content
Log in

Payne Effect and Weak Overshoot in Rubber Nanocomposites

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Payne effect and its associated weak overshoot are of importance for understanding and regulating the softening of rubber nanocomposites under large amplitude oscillations. Herein, Payne effect in diverse filled vulcanizates is investigated for generalizing the common characteristics. Master curves of strain amplitude dependent storage modulus are created with respect to microscopic strain amplitude of the matrix, revealing a matrix-dominated elastic nonlinearity being independent of type and dispersity of filler, crosslinking density and sol fraction of matrix and filler-rubber interfacial interactions. However, carbonaceous fillers with higher affinity to the rubber matrices yield lower strain amplification and higher overshoot behavior in comparison with siliceous silica. The investigation would be illuminating for preparing rubber nanocomposites with optimized reinforcement and softening performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, S. K.; Krishnamoorti, R. Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58.

    CAS  PubMed  Google Scholar 

  2. Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343.

    Article  CAS  Google Scholar 

  3. Harwood, J. A. C.; Payne, A. R.; Whittaker, R. E. Stress-softening and reinforcement of rubber. J. Macromol. Sci. Phys. B 1971, 5, 473–486.

    CAS  Google Scholar 

  4. Sternstein, S. S.; Zhu, A. J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262–7273.

    CAS  Google Scholar 

  5. Allegra, G.; Raos, G.; Vacatello, M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 2008, 33, 683–731.

    CAS  Google Scholar 

  6. Fletcher, W. P.; Gent, A. N. Non-linearity in the dynamic properties of vulcanised rubber compounds. Trans. Inst. Rubber Ind. 1953, 29, 266–280.

    Google Scholar 

  7. Fletcher, W. P.; Gent, A. N. Nonlinearity in the dynamic properties of vulcanized rubber compounds. Rubber Chem. Technol. 1954, 27, 209–222.

    CAS  Google Scholar 

  8. Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Schweins, R.; Couty, M.; Oberdisse, J. Effect of grafting on rheology and structure of a simplified industrial nanocomposite silica/SBR. Macromolecules 2013, 46, 6621–6633.

    CAS  Google Scholar 

  9. Baeza, G. P.; Dessi, C.; Costanzo, S.; Zhao, D.; Gong, S.; Alegria, A.; Colby, R. H.; Rubinstein, M.; Vlassopoulos, D.; Kumar, S. K. Network dynamics in nanofilled polymers. Nat. Commun. 2016, 7, 11368.

    PubMed  PubMed Central  Google Scholar 

  10. Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Gummel, J.; Mujtaba, A.; Saalwächter, K.; Thurn-Albrecht, T.; Couty, M.; Oberdisse, J. Studying twin samples provides evidence for a unique structure-determining parameter in simplifed industrial nanocomposites. ACS Macro Lett. 2014, 3, 448–452.

    CAS  Google Scholar 

  11. Hyun, K.; Kim, S. H.; Ahn, K. H.; Lee, S. J. Large amplitude oscillatory shear as a way to classify the complex fluids. J. Nonnewton. Fluid Mech. 2002, 107, 51–65.

    CAS  Google Scholar 

  12. Diani, J.; Brieu, M.; Batzler, K.; Zerlauth, P. Effect of the Mullins softening on mode I fracture of carbon-black filled rubbers. Int. J. Fract. 2015, 194, 11–18.

    CAS  Google Scholar 

  13. Diaz, R.; Diani, J.; Gilormini, P. Physical interpretation of the Mullins softening in a carbon-black filled SBR. Polymer 2014, 55, 4942–4947.

    CAS  Google Scholar 

  14. Dargazany, R.; Itskov, M. Constitutive modeling of the Mullins effect and cyclic stress softening in filled elastomers. Phys. Rev. E 2013, 88, 012602.

    Google Scholar 

  15. Wan, H.; Gao, K.; Li, S.; Zhang, L.; Wu, X.; Wang, X.; Liu, J. Chemical bond scission and physical slippage in the Mullins effect and fatigue behavior of elastomers. Macromolecules 2019, 52, 4209–4221.

    CAS  Google Scholar 

  16. Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. Adv. Funct. Mater. 2016, 26, 9063–9074.

    CAS  Google Scholar 

  17. Cantournet, S.; Desmorat, R.; Besson, J. Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int. J. Solids Struct. 2009, 46, 2255–2264.

    CAS  Google Scholar 

  18. Suzuki, N.; Ito, M.; Yatsuyanagi, F. Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 2005, 46, 193–201.

    Google Scholar 

  19. Zhang, X.; Sun, S.; Ning, N.; Yan, S.; Wu, X.; Lu, Y.; Zhang, L. Visualization and quantification of the microstructure evolution of isoprene rubber during uniaxial stretching using AFM nanomechanical mapping. Macromolecules 2020, 53, 3082–3089.

    CAS  Google Scholar 

  20. Domurath, J.; Saphiannikova, M.; Ausias, G.; Heinrich, G. Modelling of stress and strain amplification effects in filled polymer melts. J. Non-Newtonian Fluid. 2012, 171–172, 8–16.

    Google Scholar 

  21. Domurath, J.; Saphiannikova, M.; Heinrich, G. Non-linear viscoelasticity of filled polymer melts: stress and strain amplification approach. Macromol. Symp. 2014, 338, 54–61.

    CAS  Google Scholar 

  22. Govindjee, S. An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite. Rubber Chem. Technol. 1997, 70, 25–37.

    CAS  Google Scholar 

  23. Merckel, Y.; Diani, J.; Brieu, M.; Gilormini, P.; Caillard, J. Effect of the microstructure parameters on the Mullins softening in carbon-black filled styrene-butadiene rubbers. J. Appl. Polym. Sci. 2012, 123, 1153–1161.

    CAS  Google Scholar 

  24. Westermann, S.; Kreitschmann, M.; PyckhoutHintzen, W.; Richter, D.; Straube, E. Strain amplification effects in polymer networks. Phys. B 1997, 234, 306–307.

    Google Scholar 

  25. Mullins, L.; Tobin, N. R. Stress softening in rubber vulcanizates. I. Use of a strain-amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J. Appl. Polym. Sci. 1965, 9, 2993–3009.

    CAS  Google Scholar 

  26. Gleissle, W.; Hochstein, B. Validity of the Cox-Merz rule for concentrated suspensions. J. Rheol. 2003, 47, 897–910.

    CAS  Google Scholar 

  27. Faitel’son, L. A.; Yakobson, É. É. Steady-state shear flow and periodic deformation. 1. Relaxation time spectra, viscosity. Polym. Mechan. 1977, 13, 898–906.

    Google Scholar 

  28. Medalia, A. I. Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 1978, 51, 437–523.

    CAS  Google Scholar 

  29. Pérez-Aparicio, R.; Vieyres, A.; Albouy, P. A.; Sanséau, O.; Vanel, L.; Long, D. R.; Sotta, P. Reinforcement in natural rubber elastomer nanocomposites: breakdown of entropic elasticity. Macromolecules 2013, 46, 8964–8972.

    Google Scholar 

  30. Litvinov, V. M.; Spiess, H. W. Molecular mobility in the adsorption layer and chain orientation in strained poly(dimethylsiloxane) networks by 2H NMR. Makrom. Chem. 1992, 193, 1181–1194.

    CAS  Google Scholar 

  31. Litvinov, V. M.; Steeman, P. A. M. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 1999, 32, 8476–8490.

    CAS  Google Scholar 

  32. Westermann, S.; Kreitschmann, M.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.; Farago, B.; Goerigk, G. Matrix chain deformation in reinforced networks: a SANS approach. Macromolecules 1999, 32, 5793–5802.

    CAS  Google Scholar 

  33. Sun, J.; Song, Y.; Zheng, Q.; Tan, H.; Yu, J.; Li, H. Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 2594–2602.

    CAS  Google Scholar 

  34. Song, Y.; Yang, R.; Du, M.; Shi, X.; Zheng, Q. Rigid nanoparticles promote the softening of rubber phase in filled vulcanizates. Polymer 2019, 177, 131–138.

    CAS  Google Scholar 

  35. Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer 2018, 156, 222–227.

    CAS  Google Scholar 

  36. Fan, X.; Xu, H.; Zhang, Q.; Xiao, D.; Song, Y.; Zheng, Q. Insight into the weak strain overshoot of carbon black filled natural rubber. Polymer 2019, 167, 109–117.

    CAS  Google Scholar 

  37. Xu, H.; Fan, X.; Song, Y.; Zheng, Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites. Comp. Sci. Technol. 2020, 187, 107943.

    CAS  Google Scholar 

  38. Song, Y.; Zeng, L.; Zheng, Q. Reconsideration of the rheology of silica filled natural rubber compounds. J. Phys. Chem. B 2017, 121, 5867–5875.

    CAS  PubMed  Google Scholar 

  39. Song, Y.; Zeng, L.; Zheng, Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. Chinese J. Polym. Sci. 2017, 35, 1436–1446.

    CAS  Google Scholar 

  40. Zhang, Q.; Xu, H.; Song, Y.; Zheng, Q. Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer 2019, 180, 121709.

    Google Scholar 

  41. Li, Z.; Wen, F.; Hussain, M.; Song, Y.; Zheng, Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites. Polymer 2020, 193, 122350.

    CAS  Google Scholar 

  42. Li, Z.; Xu, H.; Xia, X.; Song, Y.; Zheng, Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites. Polymer 2019, 171, 106–114.

    CAS  Google Scholar 

  43. Song, Y.; Zheng, Q. Linear rheology of nanofilled polymers. J. Rheol. 2015, 59, 155–191.

    CAS  Google Scholar 

  44. Song, Y.; Zheng, Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit. Rev. Solid State Mater. Sci. 2016, 41, 318–346.

    CAS  Google Scholar 

  45. Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater Sci. 2016, 84, 1–58.

    CAS  Google Scholar 

  46. Tang, Z.; Chen, F.; Chen, Q.; Zhu, L.; Yan, X.; Chen, H.; Ren, B.; Yang, J.; Qin, G.; Zheng, J. The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polym. Chem. 2017, 8, 4659–4672.

    CAS  Google Scholar 

  47. Tauban, M.; Delannoy, J. Y.; Sotta, P.; Long, D. R. Effect of filler morphology and distribution state on the linear and nonlinear mechanical behavior of nanofilled elastomers. Macromolecules 2017, 50, 6369–6384.

    CAS  Google Scholar 

  48. Lin, Y.; Liu, L.; Zhang, D.; Liu, Y.; Guan, A.; Wu, G. Unexpected segmental dynamics in polystyrene-grafted silica nanocomposites. Soft Matter 2016, 12, 8542–8553.

    CAS  PubMed  Google Scholar 

  49. Bouty, A.; Petitjean, L.; Degrandcourt, C.; Gummel, J.; Kwasniewski, P.; Meneau, F.; Boue, F.; Couty, M.; Jestin, J. Nanofiller structure and reinforcement in model silica/rubber composites: a quantitative correlation driven by interfacial agents. Macromolecules 2014, 47, 5365–5378.

    CAS  Google Scholar 

  50. Stöckelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011, 44, 4366–4381.

    Google Scholar 

  51. Qu, L.; Yu, G.; Wang, L.; Li, C.; Zhao, Q.; Li, J. Effect of filler-elastomer interactions on the mechanical and nonlinear viscoelastic behaviors of chemically modified silica-reinforced solution-polymerized styrene butadiene rubber. J. Appl. Polym. Sci. 2012, 126, 116–126.

    CAS  Google Scholar 

  52. Porter, M. Structural characterization of filled vulcanizates. Part 1. Determination of the concentration of chemical crosslinks in natural rubber vulcanizates containing high abrasion furnace black. Rubber Chem. Technol. 1967, 40, 866–882.

    CAS  Google Scholar 

  53. Schlögl, S.; Trutschel, M. L.; Chassé, W.; Riess, G.; Saalwächter, K. Entanglement effects in elastomers: macroscopic vs microscopic properties. Macromolecules 2014, 47, 2759–2773.

    Google Scholar 

  54. Luo, H.; Klüppel, M.; Schneider, H. Study of filled SBR elastomers using NMR and mechanical measurements. Macromolecules 2004, 37, 8000–8009.

    CAS  Google Scholar 

  55. Villar, M. A.; Vallés, E. M. Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 2. Viscoelastic properties. Macromolecules 1996, 29, 4081–4089.

    CAS  Google Scholar 

  56. Langley, N. R. Elastically effective strand density in polymer networks. Macromolecules 1968, 1, 348–352.

    CAS  Google Scholar 

  57. Saalwächter, K. Microstructure and molecular dynamics of elastomers as studied by advanced low-resolution nuclear magnetic resonance methods. Rubber Chem. Technol. 2012, 85, 350–386.

    Google Scholar 

  58. Fan, X.; Xu, H.; Wu, C.; Song, Y.; Zheng, Q. Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene. J. Rheol. 2020, 64, 775–784.

    CAS  Google Scholar 

  59. Hou, F.; Song, Y.; Zheng, Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates. Polymer 2020, 195, 122432.

    CAS  Google Scholar 

  60. Gavrilov, A. A.; Chertovich, A. V.; Khalatur, P. G.; Khokhlov, A. R. Study of the mechanisms of filler reinforcement in elastomer nanocomposites. Macromolecules 2014, 47, 5400–5408.

    CAS  Google Scholar 

  61. Pérez-Aparicio, R.; Schiewek, M.; Valentín, J. L.; Schneider, H.; Long, D. R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M. Local chain deformation and overstrain in reinforced elastomers: an NMR study. Macromolecules 2013, 46, 5549–5560.

    Google Scholar 

  62. Inoue, T.; Narihisa, Y.; Katashima, T.; Kawasaki, S.; Tada, T. A rheooptical study on reinforcement effect of silica particle filled rubber. Macromolecules 2017, 50, 8072–8082.

    CAS  Google Scholar 

  63. Sotta, P.; Albouy, P. A.; Abou Taha, M.; Long, D. R.; Grau, P.; Fayolle, C.; Papon, A. Nonentropic reinforcement in elastomer nanocomposites. Macromolecules 2017, 50, 6314–6322.

    CAS  Google Scholar 

  64. Fan, X.; Wen, F.; Shi, X.; Yang, L.; Hussain, M.; Song, Y.; Zheng, Q. Roles played by novolac resin on rubber compounding, reinforcement and nonlinear rheological behaviors. Polymer 2020, 207, 122895.

    CAS  Google Scholar 

  65. Ianniruberto, G.; Marrucci, G. Convective orientational renewal in entangled polymers. J. Non-newton. Fluid Mech. 2000, 95, 363–374.

    CAS  Google Scholar 

  66. Ianniruberto, G.; Marrucci, G. Convective constraint release (CCR) revisited. J. Rheol. 2014, 58, 89–102.

    CAS  Google Scholar 

  67. Yin, X.; Tan, Y.; Gao, Y.; Song, Y.; Zheng, Q. Viscoelasticity of shell-crosslinked core-shell nanoparticles filled polystyrene melt. Polymer 2012, 53, 3968–3974.

    CAS  Google Scholar 

  68. Xu, H.; Ding, L.; Song, Y.; Wang, W. Rheology of end-linking polydimethylsiloxane networks filled with silica. J. Rheol. 2020, 64, 1425–1438.

    CAS  Google Scholar 

  69. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 1999, 24, 1253–1403.

    CAS  Google Scholar 

  70. Furuichi, K.; Nonomura, C.; Masubuchi, Y.; Watanabe, H. Chain contraction and nonlinear stress damping in primitive chain network simulations. J. Chem. Phys. 2010, 133, 174902.

    PubMed  Google Scholar 

  71. Subbotin, A.; Semenov, A.; Manias, E.; Hadziioannou, G.; ten Brinke, G. Nonlinear rheology of polymer melts under shear flow. Macromolecules 1995, 28, 3898–3900.

    CAS  Google Scholar 

  72. Semenov, A. N.; Subbotin, A. V.; Hadziioannou, G.; Ten Brinke, G.; Manias, E.; Doi, M. Nonlinear dynamics of melted polymer layers. Macromole. Symp. 1997, 121, 175–186.

    CAS  Google Scholar 

  73. Mochimaru, Y. Possibility of a master plot for material functions of high-polymer solutions. J. Non-newton. Fluid Mech. 1983, 13, 365–384.

    CAS  Google Scholar 

  74. Subbotin, A.; Semenov, A.; Hadziioannou, G.; ten Brinke, G. Nonlinear rheology of confined polymer melts under oscillatory flow. Macromolecules 1996, 29, 1296–1304.

    CAS  Google Scholar 

  75. Colby, R. H.; Ober, C. K.; Gillmor, J. R.; Connelly, R. W.; Duong, T.; Galli, G.; Laus, M. Smectic rheology. Rheol. Acta 1997, 36, 498–504.

    CAS  Google Scholar 

  76. Zhao, A.; Shi, X.; Sun, S.; Zhang, H.; Zuo, M.; Song, Y.; Zheng, Q. Insights into the Payne effect of carbon black filled styrenebutadiene rubber compounds smectic rheology. Chinese J. Polym. Sci. 2021, 39, 81–90.

    CAS  Google Scholar 

  77. Hou, F.; Song, Y.; Zheng, Q. Influence of liquid isoprene rubber on strain softening of carbon black filled isoprene rubber nanocomposites. Chinese J. Polym. Sci. 2021, 39, 887–895.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U1908221, 51873190 and 51790503) and the Fundamental Research Funds for the Central Universities (No. 2020XZZX002-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hu Song or Qiang Zheng.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZY., Song, YH. & Zheng, Q. Payne Effect and Weak Overshoot in Rubber Nanocomposites. Chin J Polym Sci 40, 85–92 (2022). https://doi.org/10.1007/s10118-021-2643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2643-7

Keywords

Navigation